14 марта, вторник – 2 стендовая сессия

МАГНИТНЫЕ НАНОСТРУКТУРЫ

Вт 1	<u>М.В. САПОЖНИКОВ</u> ¹ , Б.А.ГРИБКОВ ¹ , А.А.ФРАЕРМАН ¹ , Ю.А.КЛИМОВ ¹ , JOONYEON CHANG ²	253
	¹ Институт Физики Микроструктур РАН, Нижний Новгород, Россия. ² Korea Institute of Science & Technology, Hawolgok-dong, Seongbuk-gu, Seoul136-791, Korea	
	Влияние ферромагнитных наночастиц на транспортные свойства мостиков	
Вт 2	В.В.УСТИНОВ, В.В.ПОПОВ, В.Н.КАЙГОРОДОВ, <u>Т.П.КРИНИЦИНА</u> , С.А.МАТВЕЕВ, М.А.МИЛЯЕВ, Н.К.АРХИПОВА, А.М.БУРХАНОВ, Е.А.КРАВЦОВ, И.В.БЛИНОВ	
	Институт физики металлов УрО РАН, Екатеринбург, Россия	
	Магнитные свойства, кристаллическая структура и строение интерфейсов бислойных наноструктур Со/СоО.	
Вт 3	<u>O.I. YAAJOB</u> , A.A. OPAEPMAH	
	институт физики микроструктур РАП, П.Повгороо, Россия Спиновая и запаловая аккумуляния в системах с некомпланарным	
	распределением намагниченности.	
Вт 4	<u>А.В. МУРЕЛЬ¹, Ю.А ДАНИЛОВ², М.Н.ДРОЗДОВ¹, Ю.Н.ДРОЗДОВ¹, М.А.А.РUDENZI³</u>	255
	¹ Институт физики микроструктур РАН, Н.Новгород, Россия. ² Научно- исследовательский физико-технический институт ННГУ, Н.Новгород, Россия. ³ Instituto de Fisica "Gleb Wataghin", Universidade de Campinas, Campinas, Brasil	
	Свойства гибридных магнитных структур, сформированных имплантацией ионов Mn в GaAs	
Вт 5	Р.С.ИСХАКОВ, Л.А.ЧЕКАНОВА, Е.А.ДЕНИСОВА, <u>С.В.КОМОГОРЦЕ</u> В	
	Институт физики им. Л.В.Киренского СО РАН, Красноярск, Россия	
	Магнитные свойства нанокристаллических ферромагнитных нитей Fe-Ni в поликарбонатных мембранах.	
Вт 6	¹ Р.С.ИСХАКОВ, ² <u>Н.А.ШЕПЕТА</u> , ^{1,3} С.В.СТОЛЯР, ¹ Л.А.ЧЕКАНОВА, ¹ В.Ю.ЯКОВЧУК ¹ Институт физики СО РАН им. Л.В. Киренского, ² Сибирский государственный аэрокосмический университет им. М.Ф. Решетнева, ³ Красноярский государственный университет, Красноярск, Россия	
	Спин-волновой резонанс в магнитных мультислоях Co/Pd и трехслойных пленках NiFe/Cu/NiFe.	
Вт 7	<u>E.M.APTEMЬEB¹</u> , Л.В.ЖИВАЕВА ²	257
	¹ Красноярский государственный технический университет, ² Красноярский торгово- экономический институт, Красноярск, Россия	
	Перпендикулярная магнитная анизотропия в пленках сплавов FePd, Fe ₅₀ Pd _{50-x} Pt _x .	
Вт 8	Р.Г. ГАТИЯТОВ ^{1,2} , П.А. БОРОДИН ¹ , А.А. БУХАРАЕВ ¹ , Д.А. БИЗЯЕВ ¹	259
	¹ Казанский физико-технический институт КазНЦ РАН, ² Казанский Государственный университет, Казань, Россия	
	Магнитомеханические эффекты и магнитосопротивление никелевых	
Вт 9	наноструктур. <u>М.В.ВАШУК¹</u> , Е.А.ГАНЬШИНА ² , И.И.ТУЛЬСКИЙ ² , П.Н.ЩЕРБАК ² , Ю.Е.КАЛИНИН ³ , А.В.СИТНИКОВ ³ .	261
	¹ Институт теоретической и прикладной электродинамики ОИВТ РАН, Москва, Россия. ² МГУ им. М.В. Ломоносова, Москва, Россия. ³ Воронежский Технический Университет, Вороцала, Россия	
	доронеж, 1 оссия Эвополия оптических и мягнитооптических свойств в мули тислойних систомох	
	ферромагнитный металл-полупроводник {CoFeZr(x)-aSi(y)}n.	
Вт 10	С.Н. ВДОВИЧЕВ, Б.А. ГРИБКОВ, <u>С.А. ГУСЕВ,</u> Д.С. НИКИТУШКИН, А.А.ФРАЕРМАН, В.Б.ШЕВЦОВ.	263
	Институт Физики Микроструктур РАН, Н.Новгород, Россия	
	Статистика вихревых состояний двумерных решеток ферромагнитных нанодисков.	

Вт 11	О.В.ВИХРОВА ¹ , Ю.А.ДАНИЛОВ ^{1, 2} , Е.С.ДЕМИДОВ ³ , Б.Н.ЗВОНКОВ ¹ , В.И.КОВАЛЕВ ⁴ , <u>З.Э.КУНЬКОВА⁴</u> , В.В.ПОДОЛЬСКИЙ ¹ , М.В.САПОЖНИКОВ ² , А.И.СУЧКОВ ⁵ , М.П.ТЕМИРЯЗЕВА ⁴	265
	¹ Научно-исследовательский физико-технический институт ННГУ, Н. Новгород, Россия. ² Институт физики микроструктур РАН, Н. Новгород, Россия. ³ Нижегородский государственный учиверситет им. Н.И. Побливеского, Н. Новгород, Россия.	
	⁴ Фрязинский филиал Института радиотехники и электроники РАН, Фрязино, Россия. ⁵ Институт химии высокочистых веществ РАН, Н. Новгород, Россия	
Вт 12	Ферромагнетизм в слоях GaMnAs, нанесенных методом лазерной эпитаксии. <u>E.С.ДЕМИДОВ¹</u> , Ю.А.ДАНИЛОВ ¹⁻³⁾ , В.В.ПОДОЛЬСКИЙ ^{2, 3)} , А.АФРАЕРМАН ³⁾ , М.В.САПОЖНИКОВ ³⁾ , В.П.ЛЕСНИКОВ ^{2, 3)} , Д.М.ДРУЖНОВ ¹⁾	267
	¹⁾ Нижегородский государственный университет им.Н.И.Лобачевского, ²⁾ Научно- исследовательский физико-технический институт ННГУ, ³⁾ Институт физики микроструктур РАН, Н. Новгород, Россия	
	Лазерно осаждённые наноразмерные ферромагнитные эпитаксиальные слои на	
	основе германия и кремния, пересыщенных примесями группы железа	
Вт 13	Ю.М. КОРОТЕЕВ	269
	Институт физики прочности и материаловедения СО РАН, Томск, Россия	
	Электронная структура монослоя Fe на поверхности Si(111)	
Вт 14	А.С.КОРШУНОВ, Ю.Б.КУДАСОВ	271
	Российский Федеральный Ядерный Центр – ВНИИЭФ, Саров, Россия	
	Стимуляция ферромагнитного состояния на поверхности палладия сильным	
	электрическим полем.	
Вт 15	Ю.Б.КУДАСОВ	273
	Российский Федеральный Ядерный Центр – ВНИИЭФ, Саров, Россия	
	Кривая намагниченности треугольной решетки изинговских цепочек	
Вт 16	<u>А.К.МУРТАЗАЕВ¹, К.Ш.ХИЗРИЕВ¹, В.М.УЗДИН²</u>	275
	¹ Институт физики Дагестанского НЦ РАН, Махачкала, Россия. ² МЦ ДПО СПбГУ, С Петербург, Россия	
	Исследование критических явлений в моделях наноразмерных магнитных сверхрешеток	
Вт 17	<u>Г.А.ОВСЯННИКОВ^{1,2},</u> В.ДЕМИДОВ ¹ , Ю.В. КИСЛИНСКИЙ ¹ , Ф.В. КОМИССИНСКИЙ ^{1,2}	277
	¹ Институт радиотехники и электроники, Москва, Россия. ² Чалмерский технологический университет, Гетеборг, Швеция.	
	Проводимость и антиферромагнитизм допированных Sr эпитаксиальных тонких пленок СаСиО ²	
Вт 18	<u>А.С. ПАРШИН¹</u> , Г.А. АЛЕКСАНДРОВА ¹ , С.Н. ВАРНАКОВ ^{1,2} , С.А. КУЩЕНКОВ ¹ , С.Г. ОВЧИННИКОВ ²	279
	¹ Сибирский государственный аэрокосмический университет им. М.Ф. Решетнева, Красноярск, Россия. ² Институт физики им. Л.В. Киренского СО РАН, Красноярск,	
	Академгородок, Россия.	
	Исследование магнитных слоистых наноструктур Fe/Si методом спектроскопии	
Вт 19	Ю.А. БАБАНОВ ^{1,2} , В.П. ПИЛЮГИН ¹ , Т. МИЯНАГА ³ , А.М. ПАЦЕЛОВ ¹ , Е.Г.ЧЕРНЫШЕВ ¹ , А.В. РЯЖКИН ¹ , Т. ОГАСАВАРА ³	281
	¹ Институт физики металлов УрО РАН, Екатеринбург, Россия. ² Удмурдский	
	государственный университет, Ижевск, Россия. ³ Отдел наук и технологий, факультет наук, университет Хиросаки, Хиросаки, Япония	
	Нанокристаллические твердые растворы Ni–Mn – новые материалы с	
	конкурирующим обменным взаимодействием.	
Вт 20	<u>САДЫКОВ Э.К.</u> ¹ , АРИНИН В.В. ¹ , ВАГИЗОВ Ф.Г. ^{1,2} , ¹ Казанский университет, Казань, Россия. ² Техасский университет, Колледж Стейшн,	283
	Контролируемая квантовая интерференция в мессбауэровской спектроскопии: «вентильный» эффект.	

<u>В.Г.СЕМЕНОВ</u> ¹ , В.С.ВОЛОДИН ¹ , В.В.ПАНЧУК ¹ , В.В.МАТВЕЕВ ¹ , EAMONN DELVII Г.Ю.ЮРКОВ ³ , Д.А.БАРАНОВ ³ , И.П.ДОЦЕНКО ³	N ² , 285
¹ Санкт-Петербургский государственный университет, СПетербург, Россия. ² NCSR "Demokritos", Greece. ³ ИОНХ им. Курнакова РАН.	
Исследование наноразмерных частиц железа в матрице полиэтилена высокого давления (ПЭВД) методом Мессбауэровской спектроскопии.	
В.М.УЗДИН	287
Санкт-Петербургский государственный университет, СПетербург, Россия	
Структурные дефекты и пространственно-неоднородные состояния в магнитных наносистемах.	
И. В.МАЛИКОВ, В.Ю.ВИННИЧЕНКО, <u>Л.А.ФОМИН</u> , К.М.КАЛАЧ, Г.М.МИХАЙЛОВ	3 289
Институт проблем технологии микроэлектроники и особо чистых материалов РАН, Черноголовка, Россия	
Развитие нанотехнологии и методов исследования магнитных и электронно-	
пранспортных своиств планарных наноструктур из ферромат- нитных металлов. ВVГАЛЬТЕРГА ШВЕНОВАВ	201
Бутальты т.а., <u>шысцов а.в.</u> Нижазародский государстваниций униварститат им. Н.И. Побанаяского, Н.Новгород	291
Россия	
Электромагнитно индуцированная прозрачность в кристаллах магнитных молекул.	
Д.С.ИЛЬЮЩЕНКОВ ¹ , М.А.ОДНОБЛЮДОВ ¹ , Д.А.ЯВСИН ¹ , В.М.КОЖЕВИН ¹ , И.Н.ЯССИЕВИЧ ¹ , С.А.ГУРЕВИЧ ¹ , Т.Т.NGUYEN ² , Е.BRUCK ² .	293
1 ФТИ им. А.Ф. Иоффе РАН, Санкт-Петербург, Россия. ² Van der Waals – Zeeman Institute, University of Amsterdam, Amsterdam, The Netherlands.	
Магнитные плёнки из монодисперсных никелевых наночастиц.	
В.В.АМЕЛИЧЕВ ¹ , <u>А.И.ГАЛУШКОВ¹</u> , С.И.КАСАТКИН ² , А.М.МУРАВЬЁВ ² , Ф.А.ПУДОНИН ³ , А.И.КРИКУНОВ ⁴	295
¹ Государственное учреждение Научно-производственный комплекс «Технологический Центр» МИЭТ, Зеленоград, Россия. ² Институт проблем управления РАН, Москва,	
Россия. ³ Физический Институт РАН, Москва, Россия. ⁴ Фрязинский филиал Институн	na
радиотехники и электроники, Фрязино, Россия	
Исследование спин-туннельных магниторезистивных переходов.	207
	297
институт физики молекул и кристаллов уфимского научного центра РАН, ² Башкирский Государственный Университет, Уфа, Россия	
Особенности гигантского магнетосопротивления в ситеме ферромагнетик-полим	ер
L.S.ISAEV ¹ , Y.S.JOE ¹ , <u>A.M.SATANIN²</u>	299
¹ Department of Physics and Astronomy, Ball State University, Muncie, USA. 2Institute for Physics of Microstructures of the RAS, N.Novgorod, Russia	
Spin-polarization effects in quantum films based on narrow-band semiconductors	
НАНОФОТОНИКА	
С.П.СВЕТЛОВ ¹ , <u>В.Ю.ЧАЛКОВ</u> ¹ , В.Г.ШЕНГУРОВ ¹ , В.Н.ШАБАНОВ ¹ , С.А.ДЕНИСОВ 3.Ф.КРАСИЛЬНИК ² , Л.В.КРАСИЛЬНИКОВА ² , М.В.СТЕПИХОВА ² , Д.В.ШЕНГУРОЕ Ю.Н.ДРОЗДОВ ²	$3^{1}, 301$ $3^{2}, 3^{2}, 3^{2}$
¹ Научно-исследовательский физико-технический институт ННГУ им. Н И Лобачевского ² Институт физики микроструктур РАН. Н. Новгород. Россия	
Гетероструктуры Si/Si _{1-x} Ge _x :Er/Si(100), выращенные методом сублимации кремни	19
в среде германа О А ШАЛЫГИНА Л М ЖИГУНОВ В Ю ТИМОШЕНКО П К КАШКАРОВ	303
$\underline{\circ}, \underline{\cdot}, \underline{\cdot}$	505

Вт 30 <u>О. А. ШАЛЫГИНА</u>, Д. М. ЖИГУНОВ, В. Ю. ТИМОШЕНКО, П. К. КАШКАРОВ Московский Государственный Университет им. М.В. Ломоносова, Москва, Россия Светоизлучающие свойства легированных эрбием структур кремниевых нанокристаллов в матрице диоксида кремния.

Вт 31	<u>Э.А.ШТЕЙНМАН¹, А.Н.ТЕРЕЩЕНКО¹, В.Я.РЕЗНИК²</u>	305
	¹ Институт физики твердого тела РАН, Черноголовка, ² ГИРЕДМЕТ, Москва, Россия.	
	Структура и излучательные свойства дислокаций, возникающих при росте	
	кислородных преципитатов в кремнии.	
Вт 32	<u>О.А.АКЦИПЕТРОВ</u> , С.С.ЕЛОВИКОВ, Е.М.КИМ, Т.В.МУРЗИНА	307
	Физический факультет МГУ им. М.В. Ломоносова, Москва, Россия;	
	Гигантские оптические гармоники и локальные плазмоны в серебряных	
	наночастицах.	
Вт 33	<u>Н.А.БЕКИН</u> , В.Н.ШАСТИН	309
	Институт физики микроструктур РАН, Н.Новгород, Россия	
	Принцип каскадного лазера на примесных состояниях в селективно легированных сверхрешетках.	
Вт 34	В.А. БЕЛЯКОВ, В.А. БУРДОВ	311
	Нижегородский государственный университет им. Н.И. Лобачевского, Н.Новгород, Россия	
	Тонкая структура энергетического спектра носителей в кремниевых квантовых тонках с мелкими поновами	
Вт 35	А А БИРЮКОВ ¹ С М НЕКОРКИН ¹ Б Н ЗВОНКОВ ¹ В Я А ПЁШКИН ²	313
DI 55	A.A.ДУБИНОВ2, А.А.БЕЛЯНИН3, В.В.КОЧАРОВСКИЙ3,4, ВЛ.В.КОЧАРОВСКИЙ4	515
	¹ Научно-исследовательский физико-технический институт ННГУ, Н. Новгород, Россия. ² Институт физики микроструктур РАН, Н. Новгород, Россия. ³ Институт квантовых исследований и физический факультет Техасского Т&M университета, США. ⁴ Институт прикладной физики РАН. Н. Новгород, Россия	
	Полупроволниковый лазер с металлической лифракционной решеткой.	
Вт 36	В.А. БУРДОВ	315
	Нижегородский государственный университет им. Н.И. Лобачевского, Н.Новгород, Россия	
	Влияние поляризационных полей на ширину оптической щели кремниевых нанокристаллов.	
Вт 37	В.Я. АЛЕШКИН, А.В. АНТОНОВ, <u>Л.В. ГАВРИЛЕНКО,</u> В.И. ГАВРИЛЕНКО.	316
	Институт физики микроструктур РАН, Н. Новгород, Россия	
	Резонансы Фано в спектре фототока легированных полупроводников и	
	гетероструктур с квантовыми ямами	
Вт 38	М.С. БРЕСЛЕР ¹ , <u>О.Б. ГУСЕВ</u> ¹ , А.В. МУДРЫЙ ² , Е.И. ТЕРУКОВ ¹ , Ю.К. УНДАЛОВ ¹	318
	¹ Физико-технический институт им. А.Ф. Иоффе РАН, Санкт- Петербург, Россия. ² Объединенный институт физики твердого тела и полупроводников НАНБ, Минск, Белатусь	
	Доларуссо Фотолюминеспенция эрбия в гетерогенной матрице аморфного кремния.	
	полученного магнетронным распылением.	
Вт 39	<u>Е.В.ДЕМИДОВ,</u> М.С.КУЗНЕЦОВ, В.В.ЦЫПЛЕНКОВ, В.Н.ШАСТИН	320
	Институт физики микроструктур РАН, Н.Новгород, Россия	
	Переходы между уровнями донорного центра в Si со спонтанным излучением плинноволновых экустических фононов	
Вт 40	В Я АЛЕШКИН ¹ А А АФОНЕНКО ² А А ЛУБИНОВ ¹	322
21 10	¹ Институт физики микроструктур РАН. Н.Новгород. Россия. ² Белорусский	
	государственный университет Минск, Белоруссия	
	О нелинейной генерации излучения на разностной частоте в среднем и дальнем инфракрасных диапазонах в полупроводниковых волноводах на основе фосфида гадлия	
Вт 41	<u>К.С.ЖУРАВЛЕВ</u> *, Д.Д.РИ*, В.Г.МАНСУРОВ*, А.Ю.НИКИТИН*, П.П.ПАШКОВ**, П.О.ХОЛЬТЦ**	324
	* Институт физики полупроводников СО РАН, Новосибирск, Россия. **Университет Линчопинга, Линчопинг, Швеция	
	Микро-фотолюминесценция квантовых точек GaN в AlN матрице, выращенных методом молекулярно-лучевой эпитаксии.	

Вт 42	<u>В.И. ЗУБКОВ¹</u> , И.С. ШУЛГУНОВА ¹ , А.В.СОЛОМОНОВ ¹ , М. GELLER ² , А. MARENT ² , 326 D. BIMBERG ² , А.Е.ЖУКОВ ³ , Е.С.СЕМЕНОВА ³ , В.М.УСТИНОВ ³		
	¹ Санкт-Петербургский государственный электротехнический университет «ЛЭТИ», СПетербург, Россия. ² Technische Universität Berlin, Institut für Festkörperphysik, Berlin, Germany ³ Физико-технический институт им 4 Ф. Иоффе РАН. СПетербург, Россия		
	Прямое наблюление процесса захвата носителей заряла в массив		
	самоорганизующихся квантовых точек		
Вт 43	В.Я.АЛЕШКИН ¹ , <u>А.В.ИКОННИКОВ</u> ¹ , В.И.ГАВРИЛЕНКО ¹ , О.А.КУЗНЕЦОВ ² , К.Е.СПИРИН ¹	328	
	¹ Институт физики микроструктур РАН, ² Научно-исследовательский физико- технический институт ННГУ, Н.Новгород, Россия		
	Исследование примесного магнитопоглощения в гетероструктурах Ge/GeSi при		
Вт 44	импульсном фотовозоуждении. A A AFONENKO ¹ V K KONONENKO ² Р CHRISTOL ³ A IOULLIÉ ³	330	
DI II	¹ Belarussian State University, Minsk, Belarus. ² Stepanov Institute of Physics NASB, Minsk, Belarus. ³ Université de Montpellier II, Montpellier, France	550	
	Spectral characteristics of heterostructures in the GaInAsSb–AlGaAsSb–GaSb system		
Вт 45	<u>Л.В. КРАСИЛЬНИКОВА¹, Д.М.ЖИГУНОВ², О.А. ШАЛЫГИНА², В.Ю. ТИМОШЕНКО², М.В. СТЕПИХОВА¹, В.Г. ШЕНГУРОВ³, З.Ф.КРАСИЛЬНИК¹</u>	332	
	¹ Институт физики микроструктур РАН, Н.Новгород, Россия. МГУ им. М.В.Ломоносова, Москва, Россия. Научно-исследовательский физико-технический институт ННГУ им. Н.И.Лобачевского, Н.Новгород, Россия		
	Люминесцентные свойства легированных эрбием структур Si и SiGe в условиях		
D- 16	СИЛЬНОГО ОПТИЧЕСКОГО ВОЗбУЖДЕНИЯ. КО И ПРОЗПОР 2 Ф. ИРАСИПЦИИИ П.И. ПОГАНОР А.Р. ИОРИИОР М.Р. ШАПЕЕР	224	
DT 40	О.П.ДГОЗДОВ, З.Ф.КГАСИЛЬНИК, <u>Д.Н.ЛОВАНОВ</u> , А.В.НОВИКОВ, М.В.ШАЛЕЕВ, Д.В.ШЕНГУРОВ, А.Н.ЯБЛОНСКИЙ Ималиличи физики симпестивники <i>ВАН. И И</i> ссерес.). <i>Воссия</i>	334	
	институт физики микроструктур РАП, П.Повгороо, Россия Сравнительный анализ фотолюминесценции GeSi/Si(001) самоформирующихся		
	наноостровков и дефектов кристаллической решётки.		
Вт 47	С.А.КРИВЕЛЕВИЧ, <u>М.И.МАКОВИЙЧУК,</u> Р.В.СЕЛЮКОВ	336	
	Институт микроэлектроники и информатики РАН, Ярославль, Россия.		
	Электронно-дырочная рекомбинация на ловушках, связанных с эрбий-		
Вт 48	А.А. МАРМАЛЮК ¹ . Ю.А. РЯБОШТАН ¹ . М.А. ЛАЛУГИН ²	338	
	¹ ООО "Сигм Плюс", Москва, Россия. ² Калужский филиал Московского Государственного Технического		
	Университета им. Н.Э. Баумана, Калуга, Россия		
	GaInAs/AlGaInAs/InP – перспективная система материалов для ИК-		
D 40	фотоприемников с квантовыми ямами	2.40	
Вт 49	Д.И. ТЕТЕЛЬБАУМ ¹ , В.А. БУРДОВ ¹ , <u>А.Н. МИХАИЛОВ¹</u> , А.И. БЕЛОВ ¹ , Д.А.КАМБАРОВ ¹ , Д.М. ГАПОНОВА ²	340	
	[•] Нижегорооскии государственныи университет им. Н.И. Лобачевского, [•] Институт физики микроструктур РАН. Н Новгород. Россия		
	Кинетика фотолюминесценции слоев SiO2 с ионно-синтезированными		
	нанокристаллами Si, легированных фосфором, бором и азотом.		
Вт 50	<u>Ю.А. МОРОЗОВ¹</u> , М. ПЕССА ² , Т. ЛЕЙНОНЕН ² , А. ХАРКОНЕН ² , М.Ю. МОРОЗОВ ³	342	
	¹ Институт радиотехники и электроники РАН, Саратов, Россия. ² Optoelectronics Research Centre, Tampere University of Technology, Tampere, Finland. ³ Capamoвский		
	госуоарственный университет, Саратов, Россия.		
	динамика излучения двухчастотного лазера с вертикальным внешним резонатором.		
Вт 51	В.В.ПОПОВ ¹ , <u>О.В.ПОЛИЩУК</u> ¹ , Т.Ю.БАГАЕВА ¹ , Д.В.ФАТЕЕВ ¹ , G.R AIZIN ²	344	
	¹ <i>Capamobckuŭ филиал Института радиотехники и электроники PAH, Capamob, Poccuя.</i> ² <i>Department of Physical Sciences, Kingsborough College of the City University of New York,</i> <i>Brooklyn, NY, USA</i>		
	Терагерцовый фотоприемник на плазменном резонансе в полевом		
	гетеротранзисторе с решеточным затвором.		

Вт 52	Т.В.ТЕПЕРИК ¹ , <u>В.В.ПОПОВ</u> ¹ , О.В.ПОЛИЩУК ¹ , Д.В.ФАТЕЕВ ¹ , F.J. GARCÍA DE ABAJO ² , J.J.BAUMBERG ³ , T.KELF ³ , Y.SUGAWARA ³	346
	¹ Саратовский филиал Института радиотехники и электроники РАН, Саратов, Россия. ² Donostia International Physics Center, San Sebastian, Spain. ³ University of Southampton, Southampton, United Kingdom.	
	Резонансная дифракция и преобразование поляризации света на поверхности	
D_ 52	нанопористого металла.	240
Вт 53	<u>Д.Ю. РЕМИЗОВ</u> , З.Ф. КРАСИЛЬНИК, В.П. КУЗНЕЦОВ, С.В. ОБОЛЕНСКИИ, В.Б. ШМАГИН	348
	Институт физики микроструктур РАН, Н.Новгород, Россия	
D- 54	О возможности расширения области пространственного заряда в диодной структуре Si:Er/Si, излучающей в режиме пробоя р/n-перехода.	250
BT 54	<u>М.М. СОБОЛЕ</u> В, А.Е. ЖУКОВ, А.П. ВАСИЛЬЕВ, Е.С. СЕМЕНОВА, В.С. МИХРИН Физико тахичиваний институт ин А.Ф.Иоффа РАН. Сашет Патарбура. Россия	350
	Физико-технический институт им. А.Ф.Поффе г АП, Санкт-Петероург, госсия Эффект Штарка в многослойной системе сильно связанных квантовых точек In As/GaAs	
Вт 55	НАУ ОДАЗ. А.М.ЕМЕЛЬЯНОВ, В.В.ЗАБРОДСКИЙ, Н.В.ЗАБРОДСКАЯ, <u>Н.А.СОБОЛЕВ,</u> В.Л.СУХАНОВ	352
	Физико-технический институт им. А.Ф. Иоффе РАН, СПетербург, Россия	
Вт 56	Краевая электролюминесценция эффективного точечного кремниевого светодиода. СОШНИКОВ И.П.	
	Физико-технический институт им. А.Ф.Иоффе РАН, Научно-образовательный комплекс СПб ФТНОЦ РАН, СПетербург, Россия	
	Исследование структуры и оптоэлектронных свойств гетероструктур InGaP/AlInGaP, выращенных на подложках GaAs(811)А методом МПЭ	
Вт 57	<u>V.V.TEMNOV</u> , U.WOGGON	
	Experimentelle Physik IIb, Universität Dortmund, Dortmund, Germany	
D 70	Signatures of Superradiance of Quantum Dots in Microcavities.	254
BT 5 8	<u>M-E PISTOL</u> , C. PRYOR, Z. ZANOLLI, N. SKOLD, L.E. JENSEN, M.I. BJORK, AND L. SAMUELSON	354
	Solid State Physics/The Nanometer Structure Consortium, Lund University, Lund, Sweden Fabrication, optical characterization and modeling of strained coreshell nanowires.	
	16 марта, четверг – 3 стендовая сессия	
	РЕНТГЕНОВСКАЯ ОПТИКА	
Чт 1	М.С.БИБИШКИН ¹ , <u>Е.Д. КАЗАКОВ</u> ² , В.И. ЛУЧИН ¹ , Н.Н. САЛАЩЕНКО ¹ , В.В. ЧЕРНОВ ¹ , Н.И. ЧХАЛО ¹ , А.П. ШЕВЕЛЬКО ^{2,3} .	356
	¹ Институт физики микроструктур РАН, Н.Новгород, Россия, ² Институт физики экстремальных состояний Объединенного института высоких температур РАН, Москва, Россия, Физический институт им. П.Н.Лебедева, Москва.	
	Короткопериодные W/B4C дисперсионные элементы для рентгеновской	
	спектроскопии плазмы	
Чт 2	<u>КУЗИН С.В.,</u> ПЕРЦОВ А.А., ШЕСТОВ С.В.	
	Физический институт им. П.Н.Лебедева РАН, Москва, Россия	
	Двухкоординатные детекторы для регистрации мягкого рентгеновского и ВУФ излучений на основе ПЗС-матрицы.	
Чт 3	М.С. БИБИШКИН, С.А.ГУСЕВ, И.Г.ЗАБРОДИН, А.Ю.КЛИМОВ, Е.Б.КЛЮЕНКОВ, А.Я.ЛОПАТИН <u>, В.И.ЛУЧИН</u> , А.Е.ПЕСТОВ,	358
	Н.Н.САЛАЩЕНКО, Н.Н.ЦЫБИН, Н.И.ЧХАЛО, Л.А.ШМАЕНОК* Инализика физики иникроструктур РАН И Нассород Россия. *Физика технический	
	институт физики микроструктур ГАП, П.Новгороо, Россия, «Физико-технический институт им. А.Ф. Иоффе РАН , СПетербург, Россия, PhysTeX, Netherlands	
	Характеристики абсорбционных EUV-фильтров при высоких тепловых нагрузках.	

Чт 4	АРИСТОВ В.В., ПАВЛОВ Г.А., ШАБЕЛЬНИКОВ Л.Г.	
	Институт проблем технологии микроэлектроники и особочистых материалов РАН, Черноголовка, Россия	
	Моделирование процесса формирования преломляющих рентгеновских линз	
	методом центрифугирования	
Чт 5	<u>П.В. ДОРОВАТОВСКИИ</u> ^{1,2} , С.Н. СУЛЬЯНОВ ² , Д.М. ХЕИКЕР ²	
	'КЦСИ и НТ, РНЦ "Курчатовский Институт", 'Институт кристаллографии им. А.В.Шубникова РАН, Москва, Россия	
	Устройство и область применения станции белковой кристаллографии «БЕЛОК» на накопителе «СИБИРЬ-2».	
Чт б	<u>А.Н. АРТЕМЬЕВ</u> ¹ , А.А.СНИГИРЕВ ² , В.Н.КОРЧУГАНОВ ¹ , А.Г.ВАЛЕНТИНОВ ¹ , В.В.КВАРДАКОВ ¹ , Н.А. АРТЕМЬЕВ ^{1,2} , А.В. ЗАБЕЛИН ¹ , В.А.РЕЗВОВ ¹ , Б.Ф.КИРИЛЛОВ ¹ , А.Г.МАЕВСКИЙ ¹ , О.В. НАЙДА ¹ , А.А.ДЯТЛОВ ¹	360
	¹ Российский научный центр Курчатовский институт, Москва, Россия, ² European Synchrotron Radiation Facility, Grenoble, France	
	Применение краевого экрана и рентгеновской рефракционной линзы для определения размеров пучка электронов Курчатовского источника СИ.	
Чт 7	А.А.АХСАХАЛЯН, <u>А.Д.АХСАХАЛЯН</u> , Е.Б.КЛЮЕНКОВ, А.Я.ЛОПАТИН, В.А.МУРАВЬЕВ, В.Н.ПОЛКОВНИКОВ, Н.Н.САЛАЩЕНКО, А.И.ХАРИТОНОВ, В.В.ЧЕРНОВ	362
	Институт физики микроструктур РАН, Н.Новгород, Россия	
	Многослойное рентгеновское зеркало в форме эллипсоида вращения.	
Чт 8	<u>М.М. БАРЫШЕВА</u> , А.М. САТАНИН	364
	Институт физики микроструктур РАН, Н.Новгород, Россия	
	Латеральное смещение рентгеновских пучков и фазовая проблема рефлектометрии	
U _T 0	многослоиных периодических структур. Мм бадышева ам сатанин	366
117	\underline{M} , \underline{M} , \underline{D} AT DIFFEDA, A.M. CATATIVIT	500
	Пистипут физики микроструктур 1 л11, 11.1106гороо, 1 оссия Фазовращатели на основе многослойных рентгеновских зеркал: влияние лефектов	
Чт 10	Фазовращатели на основе многословных рептеновских зеркал. Блияние дефектов. В А БУШУЕВ	368
11 10	В.К. ВУШУЕВ Московский государственный университет им М. В. Помоносова Москва. Россия	500
	О возможности временной компрессии фемтосекунлных импульсов излучения	
	рентгеновского лазера на свободных электронах при брэгговском отражении от кристалла.	
Чт 11	K.P.GAIKOVICH ¹ , V.A.SLEMZIN ²	370
	¹ Institute for Physics of Microstructures RAS, Nizhniy Novgorod, Russia. ² Lebedev's Physical Institute of RAS, Moscow, Russia	
	Retrieval of High Atmosphere Absorption Profiles from Solar Occultation Data in EUV-	
	XUV Spectral Range.	
Чт 12	Л.И.ГОРАЙ ^{1,2}	372
	'I.I.G., Inc., USA. ⁻ Институт аналитического приборостроения РАН,, СПетербург, Россия	
	Внеплоскостная скользящего падения решетка с блеском и радиальными	
11_12	штрихами как эффективныи спектральный фильтр для КУФ литографии.	274
41 15	<u>С.С.ГУСБКОВ</u> , М.А.ФАДДЕЕВ, Е.В.ЧУПРУНОВ	3/4
	нижегорооскии госуоарственный университет имени п. и. лооачевского, п. повгороо, Россия	
Чт 14	Зонарная микроструктура кристаллов и их оптическое совершенство. <u>Е.В.ЕГОРОВ,</u> В.К.ЕГОРОВ	375
	ИПТМ РАН, Черноголовка, Россия	
	Изучение распределения интенсивности рентгеновского излучения	
	сформированного волноводом-резонатором с разновеликими рефлекторами.	o==
Чт 15	Д.В. ИРЖАК', Д.В. РОЩУПКИН', Д.В. ПУНЕГОВ', С.А. САХАРОВ ²	377
	[•] Институт проблем технологии микроэлектроники и особочистых материалов РАН, Черноголовка, Россия. ² ФОМОС-Материалс Со., Москва, Россия	
	Применение метода рентгеновской топографии для анализа резонаторов на объемных акустических волнах.	

Чт 16	N.N.KOCHEVSKY	379
	Byelorussian State University, Minsk, Belarus	
	Optical system of the two refractive X-ray lenses	
Чт 17	Ю.Л. Лобанова, А.Н. Субботин, П.Д. Гаспарян, Е.С. Цой, Н.А. Суслов	380
	Российский Федеральный Ядерный Центр ВНИИЭФ, Саров, Россия	
	Измерение спектра рентгеновского излучения лазерной плазмы с помощью изогнутого многослойного зеркала.	
Ч т 18	<u>П.Г.МЕДВЕДЕВ,</u> А.М.АФАНАСЬЕВ, М.А.ЧУЕВ	382
	Физико-технологический институт РАН, Москва, Россия	
	Аномальный эффект Косселя в рентгеновской голографии	
Чт 19	А.В. МИТРОФАНОВ	384
	Физический институт имени П.Н.Лебедева РАН, Москва, Россия	
	Безразмерный анализ оптических характеристик трековых мембран в	
Чт 20	рентгеновской и ультрафиолетовой областях спектра. <u>С.В.НЕКИПЕЛОВ</u> ¹ , А.С.ВИНОГРАДОВ ² , Д.В.ВЯЛЫХ ^{3,4} , С.Л.МОЛОДЦОВ ^{2,3,4} , В.Н.СИВКОВ ¹ , Д.В.СИВКОВ ¹	385
	¹ Сыктывкарский государственный университет, Сыктывкар, Россия. ² Санкт- Петербургский государственный университет, СПетербург, Россия. ³ Institut für Festkörperphysik, Technische Universität Dresden, Dresden, Germany. ⁴ Russian-German Laboratory at BESSY II, Berlin-Adleshof, Germany.	
	Силы осцилляторов вибрационных и ридберговских переходов в 1s – спектре	
	поглощения молекулы N ₂ .	• • -
Чт 21	И.Г.ЗАБРОДИН ¹ , И.А.КАСЬКОВ ¹ , Е.Б.КЛЮЕНКОВ ¹ , <u>А.Е.ПЕСТОВ²</u> , Д.Г.РАСКИН ¹ , Н.Н.САЛАЩЕНКО ¹ , Н.И.ЧХАЛО ¹ , В.А.КУЗНЕЦОВ ² , В.М.АРТЮХОВ ²	387
	'Институт физики микроструктур РАН, 'НПО "Салют", Нижний Новгород, Россия	
	Новая мощная трубка на длину волны 13,5 нм.	200
Чт 22	Ю.Е.КАЛИНИН ² , Л.Н.КОТОВ ¹ , <u>А.П.ПЕТРАКОВ²</u> , А.А.САДОВНИКОВ ⁴ , А.В.СИТНИКОВ ² , В.К.ТУРКОВ ¹	389
	'Сыктывкарский государственный университет, Сыктывкар, Россия. 'Воронежский	
	госуоарственный технический университет, Воронеж, Россия	
UT 23	исследование структуры нанокомпозитов металл-диэлектрик. С ю Зуев Λ с пестов в и полковников и и салащенко	201
41 23	C.IO.39 EB, A.E.IIECIOB, В.П.ПОЛКОВНИКОВ, П.П.САЛАЩЕНКОИнститут физики инклоструктур PAH <i>H</i> Hogsopod <i>Poccur</i>	391
	многослойных рентгеновских зеркал на основе Мо/Si.	
Чт 24	В.И. ПУНЕГОВ ^{1,2} , А.В. КАРПОВ ² , С.И. КОЛОСОВ ²	392
	¹ Коми научный центр УрО РАН, ² Сыктывкарский государственный университет,	
	Сыктывкар, Россия	
	Теория дифракции рентгеновского излучения от многослойного зеркала с	
	синусоидальным поверхностным рельефом.	
Чт 25	<u>В.И. ПУНЕГОВ^{1,2}</u> , А.В. КАРПОВ ² , С.И. КОЛОСОВ ²	394
	'Коми научный центр УрО РАН, 'Сыктывкарский государственный университет, Сыктывкар, Россия	
	Теория рассеяния рентгеновских лучей на многослойной дифракционной решетке	
шас	со случаиным расположением штриха в периоде.	207
Чт 26	M.M. БАРЫШЕВА, <u>А.М. САТАНИН</u>	396
	Институт физики микроструктур РАН, Н.Новгороо, Россия Флинтионны они питрити и и фороль и использования иногоолобии и отписати	
Чт 27	Флуктуации амплитудных и фазовых характеристик многослоиных структур <u>В.Н.СИВКОВ¹</u> , А.С.ВИНОГРАДОВ ² , С.В.НЕКИПЕЛОВ ¹ , Д.В.СИВКОВ ¹	398
	'Сыктывкарский государственный университет, Сыктывкар, Россия. 'Институт физики Санкт-Петербургского государственного университета, СПетербург, Россия	
	Сечения поглощения ультрамягкого рентгеновского излучения пленок ряда соединений K, Ca и Sc в интервале энергий 250 - 1400 эВ.	

Чт 28	И.А.СМИРНОВА ¹ , <u>Э.В.СУВОРОВ</u> ¹ , Е.В.ШУЛАКОВ ²	400
	¹ Институт физики твердого тела РАН, ² Институт проблем технологии микроэлектроники РАН, Черноголовка, Московская область, Россия	
	Особенности дифракции рентгеновских лучей на деформациях локализованных	
UT 20	параллельно поверхности образца. А Г ТУРЬ ЯНСКИЙ И В ПИРШИН	402
-11 27	<u>А. — ГУГ Бинский,</u> н. Б. Пин шин Физический институт им. П.Н. Лебедева РАН. Москва. Россия	402
	Туннелирование рентгеновских фотонов через тонкую пленку в условиях полного	
	внутреннего отражения.	
Чт 30	Л.Г.ШАБЕЛЬНИКОВ	404
	Институт проблем технологии микроэлектроники и особочистых материалов РАН, Черноголовка, Московская обл., Россия	
	Учет каналов потерь интенсивности фокусировки для элементов преломляющей	
UT 31	ОПТИКИ. П Г ШАБЕЛЬНИКОВ В В АРИСТОВ	406
11 51	<u>Институт проблем технологии микроэлектроники и особочистых материалов РАН,</u> Черноголовка Московская обл. Россия	400
	Внутренняя симметрия и спектральные свойства преломляющих киноформных	
	линз.	
Чт 32	Е.В. ШУЛАКОВ	408
	Институт проблем технологии микроэлектроники РАН, Черноголовка, Россия	
	Особенности формирования рентгеновского изображения в области дифракции Флаунгофера	
Чт 33	ЩЕЛОКОВ И.А. ¹ , КОНДАКОВ А.С. ¹ , СУББОТИН А.Н. ²	410
	¹ Институт проблем технологии микроэлектроники РАН, Черноголовка, Россия. ² Российский Федеральный Ядерный Центр ВНИИЭФ, Саров	
	Изготовление W/Si многослойного зеркала с латеральным градиентом периода.	
Чт 34	М.В.ЧУКАЛИНА ¹ , <u>И.А.ЩЕЛОКОВ¹, Д.П.НИКОЛАЕВ²</u>	412
	¹ Институт проблем технологии микрэлектроники РАН, Черноголовка, Россия. ² Институт проблем передачи иформации, Москва, Россия.	
	Сканирующая рентгенофлуоресцентная микроскопия на лабораторном источнике:	
Чт 35	<u>В.А. СЛЕМЗИН¹</u> , А.В. МИТРОФАНОВ ¹ , О.Л. БУГАЕНКО ¹ , С.В. КУЗИН ¹ , А.А. ПЕРПОВ ¹ , Н.Н. САЛАШЕНКО ² , С.Ю. ЗУЕВ ²	414
	¹ Физический институт им. П.Н. Лебедева РАН, Москва, Россия. ² Институт физики микроструктур РАН, Н.Новгород, Россия	
	Воздействие факторов космического полета на характеристики оптических элементов солнечных ВУФ-телескопов.	
	ΤΕΧΗΟΠΟΓИЯ ΟΠΤИЧЕСКИЕ И ΤΡΛΗΟΠΟΡΤΗΜΕ ΟΒΟЙСТВΛ	
	ПОЛУПРОВОДНИКОВЫХ НАНОСТРУКТУР.	
Чт 36	<u>Ю.Г.АРАПОВ</u> ¹ , С.В.ГУДИНА ¹ , В.Н.НЕВЕРОВ ^{1,2} , Г.И.ХАРУС ¹ , Н.Г.ШЕЛУШИНИНА ¹ , М.В.ЯКУНИН ¹ , С.МПОДГОРНЫХ ¹ , Б.Н.ЗВОНКОВ ² , Е.А.УСКОВА ²	416
	¹ Институт физики металлов, Екатеринбург, Россия. ² НИФТИ НГУ, Н.Новгород, Россия	
	Особенности перехода от слабой локализации к режиму квантового эффекта Холла	
	в 2D-структурах GaAs/n-InGaAs/GaAs с двойными квантовыми ямами	
Чт 37	<u>М.Ю.БАРАБАНЕНКОВ</u> , В.В.СТАРКОВ, Е.Ю.ГАВРИЛИН	418
	Институт проблем технологии микроэлектроники и особочистых материалов РАН, Черноголовка, Россия.	
	Микрозеркала на основе двумерных периодических структур из метало-	
Ц т 38	диэлектрических трубок М Ю Барабаненков* Ю н Барабаненков С а никитов	420
11 30	<u>мнолья аданьнов</u> , юнгранараненков, с.а.никинов *Институт проблем технологии микроэлектроники и особочистых материалов РАН	<u>т</u> 20
	Черноголовка, Россия. Институт радиотеники и электроники РАН, Москва, Россия Матал "соотношений нароного" в изотопологии возотополи и отенски и электроники РАН, Москва, Россия	
	на периодических структурах	

Чт 3 9	<u>А.В.ГЕРМАНЕНКО</u> ¹ , О.Э.РУТ ¹ , В.А.ЛАРИОНОВА ¹ , Г.М. МИНЬКОВ ^{1,2} , А.А.ШЕРСТОБИТОВ ^{1,2} , Б.Н.ЗВОНКОВ ³	421
	¹ ГОУ ВПО Уральский государственный университет им. А.М.Горького, Екатеринбург, Россия. ² Институт физики металлов УрО РАН, Екатеринбург, Россия. ³ НИФТИ, НГУ им. Н.И Лобачевского, Н. Новгород, Россия	
	Влияние электрон-электронного взаимодействия на проводимость двумерного газа	
TT 40	в полупроводниковых гетероструктурах.	100
ЧТ 40	O.B. ВИХРОВА [*] , <u>Ю.А. ДАНИЛОВ</u> ^{**} , Ю.Н.ДРОЗДОВ [*] , Б.Н.ЗВОНКОВ [*] , F. IIKAWA [*] , M.J.S.P. BRAZIL ³	423
	¹ Научно-исследовательский физико-технический институт ННГУ, Н. Новгород, Россия. ² Институт физики микроструктур РАН, Н. Новгород, Россия. ³ Insituto de Fisica "Gleb Wataghin", Universidade de Campinas, Campinas, Brazil	
	Свойства квантово-размерных структур на основе GaAs/InGaAs, содержащих б-	
Чт 41	слои марганца. <u>Е.С.ДЕМИДОВ</u> , И.С.БЕЛОРУНОВА, О.Н.ГОРШКОВ, Ю.И.ЧИГИРИНСКИЙ, М.О.МАРЫЧЕВ, М.В.СТЕПИХОВА*	425
	Нижегородский государственный университет им. Н. И. Лобачевского, *Институт физики микроструктур РАН, Н.Новгород, Россия	
	Свойства силиката магния с примесью хрома в пористом кремнии и опале.	
Чт 42	<u>Ю.Н. ДРОЗДОВ</u> , В.М. ДАНИЛЬЦЕВ, М.Н. ДРОЗДОВ, А.В. МУРЕЛЬ, О.И ХРЫКИН, Н.В. ВОСТОКОВ, В.И. ШАШКИН	427
	Институт физики микроструктур РАН, Н.Новгород, Россия	
	Диагностика покрывающих слоев в многослойных структурах с квантовыми точками InAs(N) на GaAs(001), выращенных методом металлоорганической газофазной эпитаксии	
Чт 43	Д.В.ГУСЕЙНОВ ¹ , Д.В.ХОМИЦКИЙ ¹ , <u>А.А.ЕЖЕВСКИЙ</u> ¹ , А.В.ГУСЕВ ²	429
	¹ Нижегородский государственный университет им. Н.И. Лобачевского, ² Институт химии высокочистых веществ РАН, Н.Новгород, Россия	
	Спиновая релаксация электронов, локализованных на мелких и глубоких донорных центрах в кремнии, при различном содержании ядер ²⁹ Si и изменении изотопического беспорядка.	
Чт 44	<u>Д.М.ЖИГУНОВ,</u> О.А.ШАЛЫГИНА, Д.А.ПАЛЕНОВ, В.Ю.ТИМОШЕНКО, П.К.КАШКАРОВ	431
	Московский Государственный Университет им.М.В.Ломоносова, Москва, Россия	
	Процессы рекомбинации носителей заряда и передачи энергии в ансамблях	
Um 45	кремниевых нанокристаллов ю а романов ю ю романова и в келейнов а а рыжова	122
11 45	Институт физики микроструктур РАН. Н. Новгород. Россия	т <i>уу</i>
	Блоховские осцилляции в сверхрешетках с негармоническим законом дисперсии	
Ч т 46	В.А. ВЕРБУС, <u>В.А. КОЗЛОВ</u> , А.В. НИКОЛАЕВ	435
	Институт физики микроструктур РАН, Н. Новгород, Россия	
	Терагерцовая отрицательная проводимость гетероструктурных барьеров при	
Чт 47	вя Алешкин двкоздов	437
	Институт физики микроструктур РАН, Н.Новгород, Россия	107
	Резонансные состояния акцепторов в гетероструктурах Ge/GeSi с квантовыми	
	ямами и в объемном Ge в магнитном поле.	
Чт 48	В. И. ГАВРИЛЕНКО ¹ , А. В. ИКОННИКОВ ¹ , <u>С. С. КРИШТОПЕНКО</u> ¹ , Ю. Г. САДОФЬЕВ ² , S. R. JOHNSON ² , YH. ZHANG ²	439
	′Институт физики микроструктур РАН, Н.Новгород, Россия. ′Arizona State University, Tempe, USA	
	Осцилляции субмиллиметровой фотопроводимости в нелегированных гетероструктурах InAs/AlSb с двумерным электронным газом	

Чт 49	<u>К.В.МАРЕМЬЯНИН</u> ¹ , С.В.МОРОЗОВ ¹ , Е.В.ДЕМИДОВ ¹ , В.И.ГАВРИЛЕНКО ¹ , W.KNAP ² , J.LUSAKOWSKI ² , M.A.POISSON ³ , E.MORAN ³ , C.DUA ³ , C.CAQUIERE ⁴ , D.DUCATTEAU ⁴	441
	¹ Институт физики микроструктур РАН, Н.Новгород, Россия. ² GES –UMR, CNRS - Universite Montpellier2, Montpellier, France. ³ Thales Research & Technology, Domaine de Corbeville, Orsay Cedex, France. ⁴ IEMN/TIGER, Villeneuve d'Ascq, France	
	Электронный транспорт и детектирование терагерцового излучения	
Чт 50	суомикронным полевым транзистором GaN/AIGaN. В.М.ДАНИЛЬЦЕВ, М.Н.ДРОЗДОВ, <u>Л.Д.МОЛДАВСКАЯ,</u> Д.А.ПРЯХИН, В.И.ШАШКИН, И.Ю.ШУЛЕШОВА	443
	Институт физики микроструктур РАН, Н.Новгород, Россия	
	Влияние времени роста квантовых точек в гетероструктурах InGaAs/GaAs на	
	интенсивность фотолюминесценции и ИК фотопроводимости.	
Чт 51	<u>С.В.МОРОЗОВ</u> ['] , В.И.ГАВРИЛЕНКО ['] , К.Е.СПИРИН ['] , Ү.КАWAGUCHI ² , S.KOMIYAMA ²	445
	¹ Институт физики микроструктур РАН, Н.Новгород, Россия. ² Department of Basic	
	Science, University of Tokyo, Tokyo, Japan Эволюция времени фотоотклика приемника на никлотронном резонансе 2D электронов в GaAs/AlGaAs в условиях квантового	
	эффекта Холла.	
Чт 52	<u>Д.А. ПРЯХИН</u> , Н.В. ВОСТОКОВ, В.М. ДАНИЛЬЦЕВ, М.Н. ДРОЗДОВ, Ю.Н. ДРОЗДОВ, А.В. МУРЕЛЬ, О.И. ХРЫКИН, В.И. ШАШКИН	447
	Институт физики микроструктур РАН, Н.Новгород, Россия	
	Получение гетероструктур с квантовыми точками в системе (B,In,Ga)As.	
Чт 53	<u>О.П.ПЧЕЛЯКОВ,</u> А.И.НИКИФОРОВ, Б.З. ОЛЬШАНЕЦКИЙ, С.А.ТИЙС, В.В.УЛЬЯНОВ	449
	Институт физики полупроводников СО РАН, Новосибирск, Россия	
	Нанокомпозиции на основе Si и Ge для применений в фотовольтаике: синтез из молекулярных пучков	
Чт 54	Ю.Ю.РОМАНОВА, <u>А.А РЫЖОВА,</u> Ю.А.РОМАНОВ, И.В.КЕЛЕЙНОВ	451
	Институт физики микроструктур РАН, Н. Новгород, Россия	
II 55	Нелинейные свойства двумерных сверхрешеток в бигармонических полях.	150
47 55	В.И.І АВРИЛЕНКО, Ю.І. САДОФБЕВ [*] , <u>К.Е.СПИРИН</u> ⁻ , S.К.JOHNSON, YH.ZHANG ¹ Институт физики микроструктур РАН, Н.Новгород, Россия. ² Arizona State University, Tempe USA	453
	Собенности магнетотранспорта в гетероструктурах InAs/AlSb в условиях остаточной фотопроволимости.	
Чт 56	О.И.ХРЫКИН, Н.В.ВОСТОКОВ, В.М.ДАНИЛЬЦЕВ, М.Н.ДРОЗДОВ, Ю.Н.ДРОЗДОВ, А.П. КОТКОВ*. В.И.ШАШКИН	455
	Институт физики микроструктур РАН, *ФГУП «НПП «Салют», Н.Новгород, Россия	
	Исследование различных факторов влияющих на свойства слоев GaN,	
	выращенных на сапфире методом газофазной эпитаксии.	
Чт 57	<u>Т.С.ШАМИРЗАЕВ</u> ¹ , В.А. АБАЛМАССОВ ¹ , К.С. ЖУРАВЛЕВ ¹ , J.FURST ² , H.PASCHER ²	457
	¹ Институт физики полупроводников СО РАН, Новосибирск, Россия. ² Experimentalphysik I, Universität Bayreuth, Germany	
	Измерение времени спиновой релаксации в квантовых точках InAs/AlGaAs	
11_ 50	методом Ханле.	450
ЧТ 58	<u>1.С.ШАМИРЗАЕВ,</u> А.М.І ИЛИНСКИИ, А.К. КАЛАГИН, А.И. ГОРОПОВ, К.С. ЖУРАВЛЕВ	459
	Институт физики полупроводников СО РАН, Новосибирск, Россия	
	Энергетическая структура и механизм рекомбинации монослойной квантовой ямы InAs/AlAs.	
Чт 59	<u>О.А.ШЕГАЙ</u> ¹ , В.И.МАШАНОВ ¹ , НН.СНЕNG ² , О.П.ПЧЕЛЯКОВ ¹	461
	'Институт физики полупроводников СО РАН, Новосибирск, Россия. ² Center for Condensed Matter Sciences and Graduate Institute of Electronic Engineering, National Taiwan University Taipei Taiwan Republic of China	
	танчан Онгустяну, тапрет, танчан, керионе ој Спина Межзоннад фотопроволимость Ge/Si структур с самоорганизующимиса	
	квантовыми кольцами.	

О.А.ШЕГАЙ¹, Д.Н.ЛОБАНОВ², А.И.НИКИФОРОВ¹, А.В.НОВИКОВ², В.В.УЛЬЯНОВ¹, 463 Чт 60 3.Ф.КРАСИЛЬНИК² ¹Институт физики полупроводников СО РАН, Новосибирск, Россия. ²Институт физики микроструктур РАН, Н.Новгород, Россия Межзонная фотопроводимость SiGe/Si структур с квантовыми ямами. M.V.YAKUNIN¹, YU.G.ARAPOV¹, V.N.NEVEROV¹, S.M.PODGORNYH¹, Чт 61 465 N.G.SHELUSHININA¹, G.I.HARUS¹, B.N.ZVONKOV², E.A.USKOVA² ¹Institutw of metal Physics, Ekaterinburg, Russia. ²Physical-Technical Institute it Nizhni Novgorod State University, N.Novgorod, Russia. Spin effects in stereoscopic pictures of the *n*-In_xGa_{1-x}As/GaAs double quantum well magnetoresistance dependencies on the perpendicular and parallel field components. <u>Н.В.СИБИРЕВ¹</u>, В.Г.ДУБРОВСКИЙ^{2,3}, Р.А.СУРИС³, Г.Э.ЦЫРЛИН^{1,2,3}, А.А.ТОНКИХ^{1,2,3}, И.П.СОШНИКОВ^{2,3}, В.М.УСТИНОВ^{2,3}, М.ТСНЕRNYCHEVA⁴, I.С. ЦАРМАХЪ⁴ Чт 62 467 J.C.HARMAND⁴ ¹Институт аналитического приборостроения РАН, ²Научно-образовательный комплекс «Санкт-Петербургский физико-технический научно-образовательный центр РАН», ³Физико-технический институт им. А.Ф.Иоффе РАН, С.-Петербург, Россия. ⁴CNRS-LPN, Marcoussis, France Кинетические механизмы формирования GaAs нанометровых нитевидных кристаллов

АВТОРСКИЙ УКАЗАТЕЛЬ

469

Влияние ферромагнитных наночастиц на транспортные свойства мостиков GaMnAs.

<u>М.В. Сапожников</u>¹, Б.А.Грибков¹, А.А.Фраерман¹, Ю.А.Климов¹, Joonyeon Chang²

¹ Институт Физики Микроструктур РАН, ГСП-105, Нижний Новгород, 603600, Россия. ² Korea Institute of Science & Technology, Hawolgok-dong, Seongbuk-gu, Seoul136-791, Korea e-mail: <u>msap@ipm.sci-nnov.ru</u>

Известно. что разбавленные магнитные полупроводники (DMS) обладают большим gфактором [1]. Существуют теоретические расчеты, показывающие. что неоднородные поля создаваемые магнитными наночастицами или вихрями в сверхпроводнике, располоенными над пленкой DMS могут существенно влиять на ее свойства [2]. В данной работе проведено исследование магнитных и транспортных свойств гетероструктур DMS пленка/ ферромагнитные металлические наночастицы

Пленка DMS состава GaMnAs с 5% содержанием марганца была изготовлена методом молекулярно-лучевой эпитаксии. Толщина пленки составляет около 100nm. Концентрация марганца подобрана с целью получения возможно большей температуры фазового перехода в магнитное состояние, которая в данном случае составила около 110К. Измерение зависимости сопротивления исходной DMS пленки от температуры показало, что она имеет максимум в районе 95К. В внешнем магнитном поле этот максимум смещается в область более высоких температур, что. по-видимому, является следствием подавления флуктуаций магнитного момента во внешнем магнитном поле. Величина магнитосопротивления в районе максимума составляет порядка 5% во внешнем поле 7КЭ. При приближении к критической температуре величина магнитосопротивления стремится к нулю (Рис.1).

Рис. 1. Зависимость сопротивления исходной GaMnAs пленки то температуры. Нижняя кривая – сопротивление во внешнем поле 7КЭ.

Рис.2 Зависимость сопротивления пленки GaMnAs от внешнего магнитного поля при температуре 4.2К.

При температуре 4.2К пленка также обладает отрицательным магнитосопротивлением, которое имеет величину порядка 2% во внешнем поле ЗКЭ (Рис. 1). Наличие гистерезиса при небольших значениях внешнего магнитного поля может быть по видимому объяснено перестройкой доменной структуры.

GaMnAs пленка была использована для создания гетероструктуры DMS/ферромагнитные металлические наночастицы. Для этого из пленкм был вытравлен микромостик мостик на поверхности которого методом электронной литографии был сформирован массив наночастиц Со (Рис. 3). Наночастицы расположены в цепочку вдоль мостика и имеют эллиптическую форму. Частицы отлитографированы из пленки

Рис. 3 AFM изображение DMS мостика с наночастицами.

кобальта. Форма и размер частиц (700x300nm) подобраны таким образом, чтоб они могли находится как в однодоменном так и в вихревом состоянии. Контроль магнитного состояния частиц осуществлялся при помощи магнитосилового микроскопа. Он же использовался для манипуляции состоянием частиц [3].

Зависимость сопротивления гетероструктуры от внешнего магнитного поля проводилось при температуре 4.2К в полях до 3КЭ. При этом было обнаружено существенное изменение зависимости сопротивления от магнитного поля по сравнению с исходной пленкой. Ход кривой сопротивления стал зависеть анизотропном поведении качественно сопротивления от направления внешнего магнитного поля. Как видно на рис. 4, в области полей до 1200 Э общий ход кирвой соответствует отрицательному магнитосопротивлению, если поле направлено вдоль цепочки наночастиц. В том случае если поле направлено поперек цепочки, то магнитосопротивление положительно. Эта смена знака магнитосопротивления по видимому может быть объяснена геометрией гетероструктуры. В первом случае частицы, намагниченность которых ориентируется вдоль внешнего поля, создают поля рассеяния, которые сонаправлены внешнему полю. В этом случае внешнее поле складывается с полями рассеяния и сопротивление уменьшается. В

том случае, когда внешнее поле направлено оно поперек цепочки, ориентирует то намагниченность частиц таким образом, что поля рассеяния противоположно направлены внешнему магнитному полю. В этом случае внешнее поле вычитается из более сильных полей рассеяния и действующее эффективное поле на DMS уменьшается ростом внешнего поля. с Соответственно, сопротивление системы увеличивается. При этом сама форма кривых практически идентична. В подтверждение этой гипотезы может служить тот факт, такое поведение сопротивления имеет место в том случае, когда внешнее поле направлено по намагниченности частиц. Если же изначально поле направлено навстречу намагниченности, то в очень слабых полях магнитосопротивление имеет противоположный знак - положительный при намагничивании вдоль цепочки и отрицательный при намагниченности поперек цепочки. В полях 40 Э около происходит смена знака магнитосопротивления, что, по-видимому связано с перемагничиванием большинства частиц вдоль поля. В этом же случае на кривой зависимости сопротивления от температуры наблюдаются ступеньки связанные перемагничивание с отдельных частиц или их групп.

Рис.4 Зависимость сопротивления гетероструктуры DMS/наночастицы Со от внешнего магнитного поля. А) поле направлено вдоль цепочки, В) С) поле направлено поперек цепочки. На рис. С) ступенька наблюдается при перемагничивании частиц и отсутствует, если поле изначально было направлено вдоль намагниченности частиц.

При достижении внешним полем величины 1300Э дифференциальное магнитосопротивление dR/dH становится отрицательным и одинаковым по величине вне зависимости от ориентации внешнего поля. Это связано с тем, что внешнее поле начинает превышать поля рассеяния частиц и эффективное поле начинает увеличиваться при увеличении внешнего поля.

Несмотря на то, что наблюдаемое поведение качественно можно объяснить влиянием полей рассеяния частиц, контактные эффекты связанные с обменным взаимодействием между наночастицами Со и пленкой DMS через электроны проводимости также могут играть существенную роль. Для разрешения этого вопроса необходимо исследование гетероструктуры с изолирующей прослойкой между ферромагнитными наночастицами и мостиком магнитного полупроводника.

Работа выполнена при поддержке Korea-Russia International Cooperation Program in KIST (2Z02660), Программы РАН "Спин-зависимые эффекты в твердых телах и спинтроника" и гранта РФФИ № 05-02-17362.

[1] S. Lee et al., Phys. Rev. B 61, 2120 (2000),

[2] Mona Berciu, Tatiana G. Rappoport, Boldizsár Jankó, Nature 435, 71(2005), Mona Berciu and Boldizsár Jankó, Rev. Lett. **90**, 246804 (2003)

[3] A.A.Fraerman, B.A.Gribkov, S.A.Gusev, V.L.Mironov, N.I.Polushkin, S.N.Vdovichev Physics of Low - Dimensional Structures, № 1/2, 117 (2004).

Свойства гибридных магнитных структур, сформированных имплантацией ионов Mn в GaAs

<u>А.В. Мурель¹</u>, Ю.А. Данилов², М.Н. Дроздов¹, Ю.Н. Дроздов¹,

M.A.A. Pudenzi³

¹Институт физики микроструктур РАН, Нижний Новгород, Россия

²Научно-исследовательский физико-технический институт ННГУ, Нижний Новгород, Россия

³Instituto de Física "Gleb Wataghin", Universidade de Campinas, Campinas, SP, Brasil

e-mail: murel@ipm.sci-nnov.ru

Гибридные структуры, представляющие собой включения ферромагнитных нанокластеров в полупроводниковую матрицу, представляют значительный интерес для физики магнитных явлений в твердых телах и перспективны с точки зрения формирования приборов спинтроники, работающих при комнатной температуре. Известно [1], что сформированные имплантацией структуры, больших доз ионов Mn в GaAs с последующим отжигом, содержат ферротермическим магнитные кластеры MnAs диаметром порядка 50 нм, обнаруживающие фазовый переход при приблизительно 40°С.

В данной работе в качестве подложек пластины полуизолирующего использовали GaAs (100). Имплантация выполнена при комнатной температуре мишени с энергией ионов 200 кэВ и дозой до 5×10¹⁶ см⁻². После имплантации для восстановления кристалллической структуры образцы подвергались термообработке установке быстрого В термического отжига. Длительность отжига составляла 10 с, а температура варьировалась в диапазоне от 400 до 900°С. Для исследования изменений кристаллической структуры облученного ионами GaAs использованы методы рентгеновской дифракции и резерфордовского обратного рассеяния/каналирования (POPK) ионов Не⁺ с энергией 1 МэВ.

Имплантированные слои после отжига имели *р-*тип проводимости; эффективные электрические параметры исследованы методом измерения эффекта Холла, а профили дырок методом электрохимического С-V профилирования. Показано, что температура отжига, при которой начинается электрическая активация имплантированных атомов Mn, уменьшается с ростом дозы имплантированных ионов и составляет 600°С при дозах $\ge 1 \times 10^{15}$ см⁻². Эта стадия отжига также совпадает с интенсивным восстановлением кристаллической структуры GaAs, регистрируемым методом РОРК.

Настоящее сообщение продолжает комплексное исследование гибридных структур и затрагивает вопросы, связанные с исследованием их электрофизических свойств.

Профили распределения атомов Mn в GaAs изучены методом вторичной ионной массспектрометрии (ВИМС) в зависимости от дозы внедренных ионов и от температуры последующего отжига. На рис.1 показаны теоретически рассчитанный программой TRIM профиль распределения атомов Mn с энергией 200 кэВ и дозой 10¹⁶см⁻³ (кривая 1) и полученный экспериментально методом ВИМС (кривая 2), который имеет некоторые особенности, но в целом достаточно хорошо совпадает с расчетом.

Рис. 1. Распределение по глубине концентрации атомов марганца, имплантированного в GaAs с энергией 200 кэВ и дозой 10¹⁶ см⁻³: 1 - расчет метод TRIM, 2 – ВИМС, 3 – электрохимический CV-профиль.

Кривая 3 получена электрохимическим С-V-профилированием отожженного при 700°С образца и описывает профиль распределения носителей. Сравнение с предыдущими кривыми позволяет оценить степень активации внедренных атомов после термического отжига.

изучения глубоких уровней Для в изучаемых структурах применялась методика спектроскопии нестационарной токовой с (PICTS). оптическим возбуждением Эта методика находит применение для высокоомных полупроводниковых структур, так как для них невозможно использовать емкостную спектроскопию. Оптическое возбуждение осуществлялось светодиодом с длиной волны излучения 0.7-0.8 мкм, на который подавались импульсы тока длительностью 3 мс. Оптически генерируемые носители захватываются на глубокие уровни полупроводника, и изучается их последующая эмиссия под лействием возбуждения. Температура термического изменялась в диапазоне 80-360 К. Из анализа кинетики тока эмиссии в зависимости от температуры можно определить энергии активации соответствующих уровней. На рис.2 показаны спектры PICTS, полученные для исходного полуизолирующего арсенида галлия (кривая 1) и после облучения ионами Мп (кривые 2-4). Как видно, имплантация существенно меняет спектр глубоких уровней в запрещенной зоне арсенида галлия.

Рис. 2. Спектры фотоиндуцированной токовой нестационарной спектроскопии полуизолирующего GaAs, облученного ионами Mn с энергией 200 кэВ: 1 – без облучения, 2 – доза 10^{13} см⁻³; отжиг при 750°С, 3 - 10^{13} см⁻³; 600°С, 4 - 10^{13} см⁻³; 600°С.

При PICTS измерении спектров температура изменяется в заданном диапазоне и ток оцифровывается с помощью аналогоцифрового преобразователя, что позволяет применить анализ сразу для системы временных окон, определяемых временами выборки t_i и t_{i+1} .Скорость эмиссии тепловой e_{max} , соответствующая пику в спектре, может быть определена из максимума следующей функции: $I(T) = K \cdot e_n \cdot \left[\exp(-e_n \cdot t_{i+1}) - \exp(-e_n \cdot t_i) \right]$ Для каждой обнаруженной ловушки строится зависимость Аррениуса $\log(T^2/e_{max})$ от 1/T, наклон которой дает энергию активации

ловушки E_A . На рис.3 представлены соответствующие зависимости для глубоких уровней, регистрируемых имплантированных в структурах, спектры которых приведены на рис.2. Энергии активации составляют Е_{АЛ}=0.17-0.19 \ni B, E_{A2} =0.29-0.31 \ni B, E_{A3} =0.28 \ni B, E_{A4} =0.48-0.51 эВ. Первый уровень присутствует и в исходном неимплантированном полуизолирующем арсениде галлия и является, по-видимому, ростовым центром. Остальные глубокие уровни связаны с имплантацией Mn и являются либо комплексами, образуемыми с марганцем, либо остаточными постимплантационными дефектами. На регистрируемых спектрах PICTS (рис.2) наблюдается еще один низкотемпературный пик в области *T*<90 K, оценка энергии активации которого составляет около 0.11-0.12 эВ.

Рис. 3. Зависимости Аррениуса для глубоких уровней, регистрируемых в арсениде галлия, облученном ионами Mn.

Возможно, этот же уровень проявляется и в низкотемпературной фотолюминесценции на длине волны 1.405 эВ, который связывается с акцепторным уровнем Mn²⁺ - атомы марганца, расположенные в узлах Ga подрешетки.

Сопоставление данных по ранее опубликованным структурным исследованиям [1] и измерениям эффекта Керра [2], где показано существование ферромагнитной фазы температуре, с при комнатной данными, представленными в настоящей работе, позволяют заключить, ионночто имплантированный слой представляет собой GaAs, легированную матрицу Mn с концентрациями, не превышающими предела растворимости, и обладающую свойствами классического полупроводника, с включениями состава MnAs, обладающими ферромагнитными свойствами с температурой Кюри выше комнатной температуры. Распределение атомов марганца по глубине, исследованное методами ВИМС И электрохимического CVпрофилирования, хорошо согласуется с теоретически рассчитанным. В имплантированных слоях присутствуют глубокие уровни, связанные как с внедрением атомов марганца, так и с дефектами матрицы арсенида галлия в результате ионной имплантации.

[1] Couto O.D.D., Jr., Brasil M.J.S.P., Iikawa F., Giles C., Adriano C., Bortoleto J.R.R., Pudenzi M.A.A., Gutierrez H.R., Danilov I., Appl.Phys.Lett., **86**, 071906 (2005).

[2] Данилов Ю.А., Круглов А.В., Behar M., dos Santos M.C., Pereira L.G., Schmidt J.E., ФТТ, **47**, 1567 (2005).

Перпендикулярная магнитная анизотропия в пленках сплавов FePd, Fe₅₀Pd_{50-x}Pt_x

<u>Е.М.Артемьев¹</u>, Л.В.Живаева²

¹Красноярский государственный технический университет, ²Красноярский торгово-экономический

институт, Красноярск.

aem49@yandex.ru

Исследованы фазовый состав. кристаллическая структура магнитные И свойства пленок упорядочивающихся сплавов FePd и $Fe_{50}Pd_{50-x}Pt_x$ где x = 1-10 at%. Изучено влияние термообработки на кристаллическую структуру, намагниченность и коэрцитивную силу пленок упорядоченных сплавов. Показано, что высокая коэрцитивная сила обусловлена присутствием упорядоченных фаз FePd. степенью дальнего порядка и характером расположения фаз в пленках. Сняты спектральные зависимости фарадеевского вращения и оптического поглощения.

Пленки сплавов получали методом термического вакуумного напыления на предварительно нагретые до 200-220 °C кристаллы-подложки MgO, LiF, а также стекло и кварц.

Состав пленок контролировался методом рентгеновского флуоресцентного анализа с точностью не хуже чем 0,1 %. Кристаллическое строение и фазовый состав исследованы на электронном микроскопе УЭМВ-100А. Пленки неупорядоченных сплавов FePd при содержании палладия более 12 ат.% имели кубическую гранецентрированную решетку. Пленки Fe₅₀Pd₅₀₋ _хРt_х где х =1-10 ат.% после конденсации на подложки также обладают ГЦК решеткой. Для получения в пленках необходимой степени дальнего порядка, пленки подвергались отжигу в вакууме 10⁻⁶ мм. рт. ст. при температуре ниже их точки Курнакова. Упорядочивающий отжиг пленок проводился по следующим режимам. 1. Выдержка при 700°С в течение 30 мин, охлаждение до 600°С со скоростью 10 град/мин, отжиг при 600°С - 60 мин и охлаждение до комнатной температуры со скоростью 1 град/мин. 2. Отжиг при 500°С – 60 мин. и охлаждение со скоростью 1 град/мин. 3. Отжиг при 400° - 60 мин и охлаждение со скоростью 1 град/мин. 4. Закалка в воде, выдержка при 400°С - 60 мин и охлаждение со скоростью 1 град/мин. Упорядоченная фаза типа L12 наблюдается при содержании Pd от 67 до 86 ат.%. Упорядоченная фаза FePd типа L10 существует в широком интервале концентраций Pd (от 21 до 67 ат.%).

После отжига в пленках сплавов FePd вблизи эквиатомного состава и $Fe_{50}Pd_{50-x}Pt_x$ наблюдается образование упорядоченной фазы $L1_0$ (тетрагональная гранецентрированная решетка с соотношением осей с/а <1), причем ориентация тетрагональных кристаллитов

относительно плоскости пленки зависит от ее толщины. В пленках толщиной до 300-400 Å кристаллиты тетрагональной фазы ориентируются осью «с» нормально плоскости отсутствуют пленки (на электронограмме рефлексы типа 100). В пленках больших толщин при образовании в пленках упорядоченной тетрагональной фазы магнитная анизотропия пленок претерпевает существенные изменения. В больших толщин пленках появляются тетрагональные кристаллиты, ориентированные осью «с» и в плоскости пленки по направлениям [100] и [010]. На электронограммах появляются рефлексы типа {110}, расщепляются рефлексы типа {200} и {220}.

Наиболее подробно, исходя из задачи работы, изучались пленки сплавов близких к эквиатомным. Пленки однородны по структуре. В некоторых из них наблюдаются редкие антифазные границы упорядочения (АФГ). В пленках, имеющих большие толщины, наблюдаются участки с чередованием полос разного контраста по направлениям [100]. Между этими участками по направлениям [111] видны более мелкие полосы. При переходе к темнопольному изображению контраст крупных полос не меняется, а контраст мелких полос меняется на обратный; можно считать, что крупные полосы это отдельные кристаллиты тетрагональной фазы, образовавшиеся в виде тонких пластин. Наличие таких пластин подтверждают и тяжи на электронограммах [1]. Мелкий полосчатый контраст наблюдается от ΑΦΓ.

Большое внимание уделялось исследованию кристаллической структуры после различных режимов термообработки пленок Fe₅₀Pd_{50-x}Pt_x x=1-10 ат.%. где После термообработки по режиму 2 наблюдается кристаллическая структура, состоящая ИЗ доменов упорядочения между которыми видны полосы АФГ. Отжиг по режиму 3 дал мелкокристаллическую структуру с кристаллитами размером в десятки ангстрем. После обработки по режиму 4 размеры кристаллитов увеличиваются до десятых долей микрона. Кроме того, изучалась коэрцитивная сила пленок в зависимости от режимов термообработки и содержания палладия. Для неупорядоченных пленок FePd при содержании Pd 20-68 ат.%. Н_с была в пределах 10-40 э. После закалки пленок от 700° в воде величина Н_с

уменьшилась до 8-15э. При образовании фазы FePd наблюдается упорядоченной значительное увеличение H_c. С повышением содержания палладия коэрцитивная сила постепенно возрастает от 900-1000 э при 20 ат.% Рd до максимальных значений (4000э) при эквиатомном составе сплавав. При большом содержании палладия в сплаве Н_с падает, и для сплава с 68 ат. % Рd она равна 4-5 э. В пленках эквиатомного состава толщиной до 300 Å отожженных по режиму 1, вся тетрагональная фаза FePd выстраивается осью с нормально плоскости пленки.

Для пленок FePd и Fe₅₀Pd_{50-x}Pt_x были сняты спектральные зависимости фарадеевского вращения и оптического поглощения. Оказалось, что у всех пленок минимум фарадеевского вращения приходится на область длин волн 0,4 -0.5 мкм. а максимум на ближнюю инфракрасную область 0,9- 1,2 мкм. Удельное фарадеевское вращение зависит от толшины монокристаллических пленок. Наибольшее удельное вращение имеют пленки FePd толщиной до300 Å и пленки Fe₅₀Pd_{50-x}Pt_x, где x=1-10 ат%, толщиной до 190 Å, для таких пленок F (удельное вращение Фарадея) достигает 9×10^5 град/см на длине волны $\lambda = 1,2$ мкм.

В пленках больших толщин (500 -1000 Å) после отжигов ось легкого намагничивания лежит в плоскости пленки или же выходит из нее на небольшой угол. Анизотропия в плоскости пленки двухосная. Прослеживается влияние на Н_с таких структурных факторов , как степень дальнего порядка в сплаве, размер и ориентация кристаллитов в пленках после термообработок. Степень дальнего порядка оценивалась по отношению осей с/а. Поскольку ось «с» является осью легкого намагничивания, то тонкие пленки сплавов упорядоченных становятся магнитоодноосными с легкой осью нормальной к их плоскости.

Значения констант магнитной кристаллографической анизотропии равны (2 - 3,5)10⁷ эрг/см³ для исследуемых пленок. Эти значения превосходят величину анизотропии формы и пленки остаются однородно намагниченными перпендикулярно их плоскости в отсутствие внешнего магнитного поля и могут быть использованы для термомагнитной записи и хранения информации.

Спектральная зависимость магнитооптической добротности монокристаллических пленок сплавов FePd (1, 2) и Fe₅₀Pd₄₃Pt₇ (3). Кривая 2 снята для пленок толщиной 430Å.

Спектральная зависимость удельного фарадеевского вращения для монокристаллических пленок сплавов FePd (1, 2) и Fe₅₀Pd₄₃Pt₇ (3). Кривая 2 снята для пленок толщиной 430Å.

[1]. Утевский Л.М. Дифракционная электронная микроскопия в металловедении. М., «Металлургия», 1973.

Магнитомеханические эффекты и магнитосопротивление никелевых наноструктур.

Р.Г. Гатиятов^{1,2}, <u>П.А. Бородин¹</u>, А.А. Бухараев¹, Д.А. Бизяев¹

¹Казанский физико-технический институт КазНЦ РАН, Сибирский тракт 10/7, Казань, Россия ²Казанский Государственный университет, ул. Кремлевская 18, Казань, Россия email: pborodin@mail.ru

Теоретические исследования последних нескольких лет демонстрируют, что наноконтакты с баллистическим типом обладать проводимости ΜΟΓΥΤ гигантским [1-3]. магнитосопротивлением (TMC) Экспериментально ферромагнитные наноконтакты с ГМС в сотни и даже тысячи были получены процентов путем электрохимического осаждения никеля между двумя Ni микропроволоками [4,5].

Однако, как показали недавние экспериментальные исследования [6-9], ГМС в таких наноконтактах обусловлен не баллистическим транспортом электронов, а магнитомеханическими эффектами, приводящими к смещению микропроволок относительно друг друга под действием приложенного магнитного поля. Основной вклад в такое смещение дает магнитострикция, а также микропроволок относительно смещение на которой они закреплены, подложки, вследствие их притяжения к полюсам электромагнита. За счет таких смещений может заметно меняться площадь наноконтакта, а следовательно и его сопротивление при изменении внешнего магнитного поля. Очевидно, что баллистический транспорт поляризованных электронов будет вносить основной вклад в ГМС только тогда, когда относительное смещение ферромагнитных «берегов», между которыми сформирован наноконтакт («наномостик»), будет сведено к минимуму.

В настоящей работе с помощью атомносилового микроскопа (ACM) SMENA (фирмы HT-MДT), специально сделанного ИЗ немагнитных материалов, проведены прецизионные измерения магнитострикции и магнитостатических смещений в различных Ni структурах. Используемая методика [6,10] позволяет регистрировать смещения магнитных структур под действием магнитного поля с точностью до 2 нм. Фактически, целью работы было экспериментально установить в каких Ni структурах смещение ферромагнитных «берегов» в магнитном поле порядка 100 Э не будет превышать 1 нм, в силу чего в наноконтактах, сформированных в таких ГМС структурах. вклад в от магнитомеханических эффектов будет минимален

В качестве объектов исследования были использованы структуры, в которых нами уже было зарегистрировано ГМС от 20 до 1000% и структуры, потенциально пригодные для получения наноконтактов обладающих ГМС. Структуры первого типа представляют собой две Ni проволоки диаметром 120 мкм, закрепленные эпоксидным клеем на стеклянной подложке, либо оловянным припоем на медной подложке. Структуры вторго типа Ni пленки _ электрохимически осажденные на медную подложку и термически напыленные в вакууме на MgO подложку. Результаты проведенных измерений приведены в таблице 1.

Образец	Изменение магнитного поля <i>ДН</i> , Э	Смещение, нм
Ni микропроволоки, закрепленные эпоксидным клеем (длина свободной части 1 мм).	250	21.4±4.0
Ni микропроволоки, закрепленные оловянным припоем (длина свободной части 1 мм).	250	11.2±3.5
Ni пленка, осажденная на Cu подложку (толщина 350 нм).	500	<2
Ni пленка, напыленная на MgO подложку (толщина 40 нм).	500	<2

Таблица 1. Магнитомеханические смещения в никелевых структурах.

Было установлено, что в структурах закрепленных эпоксидным клеем смещения свободного конца проволоки длиной 1мм максимальны и составляют величину порядка 20 нм при изменении поля на 250 Э. В этих образцах, после формирования в них наноконтактов, был зарегистрирован положительный магниторезистивный эффект, величиной до 1000% [6,7], который легко объяснить разрывом наноконтакта под

действием магнитного поля. Смещения Ni проволок, зафиксированных оловянным припоем на медной подложке, были вдвое меньше и в среднем составили величину 11.2 нм. Измеренное значение смещения хорошо совпадает с теоретическими оценками изменения продольных размеров Ni микропроволоки за счет магнитострикции. Очевидно в такой структуре смещения, связанные с притяжением проволочек друг к другу или к полюсам электромагнита, будут существенно меньше из-за более жесткого крепления проволок к подложке. Поэтому можно считать, что для микропроволок Ni, закрепленных оловянным припоем на медной подложке, смещение обусловлено в основном магнитострикцией.

Рис.1. Магниторезистивные кривые наноконтакта, выращенного между Ni проволоками, припаянными к медной подложке.

рис. 1 приведены Ha кривые магнитосопротивления данного образца. Рис. 1а показывает кривую, полученную сразу после формирования наноконтакта. Данный наноконтакт сохранял свои свойтсва в течение двух минут, после чего магнитосопротивление становилось отрицательным и через четыре минуты эффект ГМС исчезал (рис.1б). Вид магниторезистивных кривых существенно отличается от кривых полученных ранее на образцах, в которых проволоки фиксировались эпоксидным клеем, и не может быть объяснен только с точки зрения магнитомеханических

эффектов. Мы полагаем, что наблюдаемый эффект связан с формированием нанопроволок между двумя массивными микропроволоками. В такой конфигурации смещения микропроволоок под действием магнитного поля может оказаться недостаточным для нарушения целостности контакта.

В образцах. полученных электрохимическим осаждением никеля на медную подложку и методом напыления в вакууме на пластины из MgO, смещения под действием магнитного поля в 500 Э не наблюдались. Фактически это означает, что смещения не погрешности измерения, превышают составляющей 2 нм. Так как в поле 500 Э смещения Ni пленок составляют величину не более 2 нм, то, учитывая зависимость коэффициента магнитострикции от поля. магнитомеханические смешения при 100 Э не должны превышать 1 нм.

Выполненные нами прецизионные АСМ измерения доказывают, что магниторезистивные свойства наноструктур на основе микропроволок Ni обусловлены изменением зазора в наноконтакте между микропроволоками под действием магнитного поля преимущественно за счет магнитострикции. Планарные структуры с высокой адгезией к подложке характеризуются минимальными магнитомеханическими смещениями, И. наиболее следовательно, пригодны для получения баллистических магниторезистивных наноконтактов.

Работа выполнена при поддержке РФФИ (грант № 05-02-16550) и программ Президиума РАН и ОФН РАН.

[1] Tagirov L.R., Vodopyanov B.P., Efetov K.B. // Phys. Rev. B. 2001. V. 63. P. 104428

[2] Tagirov L.R., Vodopyanov B.P., Garipov B.M. // JMMM. 2003. V. 258-259 P.61-66.

[3] Zutic I., Fabian J., Das Sarma S. // Reviews of Modern Physics. 2004. V. 76. P. 323-410.

[4] Chopra Y.D., Hua S.Z. // Phys. Rev. B. 2002. V. 66. P. 020403R.

[5] Garcia N., Munoz M., Osipov V.V. et al. // JMMM. 2002. V. 240. P. 92-99.

[6] Бородин П.А., Бухараев А.А.,. Бизяев Д.А и др. // Поверхность. Рентгеновские, синхротронные и нейтронные исследования. 2006. №. 2. С. 24-28.

[7] Бородин П.А., Бухараев А.А., Бизяев Д.А. // Казанский физико-технический институт 2004. Ежегодник. Физтехпресс. 2005. С. 34-37.

[8] Gabureac M., Viret M., Ott F. et al. // Phys. Rev.B. 2004. V. 69. P. 100401(R).

[9] Egelhoff W.F., Jr., Gan L., Ettedgui H. et al // J. Appl. Phys. 2004. V. 95. P. 7554-7559.

[10] Papageorgopoulos A.C., Wang H., Guerrero C. et al. // JMMM. 2004. V. 268. P. 198-204.

Эволюция оптических и магнитооптических свойств в мультислойных системах ферромагнитный металл-полупроводник ${CoFeZr(x)-aSi(y)}_{n}$.

<u>М.В. Вашук¹</u>, Е.А. Ганьшина², И.И. Тульский², П.Н. Щербак², Ю.Е. Калинин³, А.В. Ситников ³

¹Институт теоретической и прикладной электродинамики ОИВТ РАН, 127412, Москва ²МГУ им. М.В. Ломоносова, физический факультет, каф. Магнетизма, 119992, Москва ³Воронежский Технический Университет. Воронеж e-mail: mvashuk@yandex.ru

Представленная работа посвящена исследованию оптических и магнитооптических (MO) свойств в мультислойных системах ферромагнитный металл-полупроводник ${CoFeZr(x)-aSi(y)}_n$. Интерес к исследованиям ферромагнитный слоистых систем типа металл/а-Si связан с обнаруженными в них (на примере структур Fe/a-Si) достаточно сильными эффектами обменного взаимодействия, которые носят преимущественно антиферромагнитный характер и до сих пор не нашли окончательного объяснения [1-3]. Многослойные магнитные пленки металл-диэлектрик интересны также тем, что в зависимости от толщины слоев могут рассматриваться, как магнитные фотонные кристаллы, когда толщины слоев сравнимы с длиной волны падающего света, или как гибридные мультислои, когда толщины слоев не превышают нескольких нанометров [4]. Как для одного, так и для другого класса мультислоев наблюдается резонансное усиление МО отклика, которое пока не удается полностью описать теоретически [5,6]. Для выяснения природы усиления MO эффектов в гибридных мультислоях провели комплексное ΜЫ исследование оптических и МО свойств таких систем и вычислили компоненты тензора диэлектрической проницаемости (ТДП).

Оптические И MO спектры были исследованы для пленок $\{Co_{0,45}Fe_{0,45}Zr_{0,1}(x)$ $aSi(y)_n$ с числом бислоев n = 54, 101, 215, в которых толщина бислоя t=x+y изменялась от 2 до 25 нм. Общая толщина пленок изменялась от 0,5 до 1,5 мкм. Данные образцы были получены ионно-лучевого методом распыления в атмосфере аргона. MO измерения были выполнены в геометрии экваториального эффекта Керра (ЭЭК). Измерение оптических констант *n* и *k* проводилось эллипсометрическим методом Битти. Все измерения были выполнены в диапазоне энергий падающего света от 0,5 до 4,5 эВ.

Ha рис.1 приведены спектральные зависимости ЭЭК для трех систем многослойных пленок {CoFeZr(x)-aSi(y)}_n. Из приведенных кривых следует, что вид и величина МО спектров сильно изменяются, как в зависимости от толщины металлических (x) И

диэлектрических (у) слоев, так и от количества бислоев(n).

Рис.1 Спектральные зависимости ЭЭК для мультислоев $\{CoFeZr(x)-aSi(y)\}_n$.

Для объяснения полученных результатов проводилось моделирование МО спектров в приближении эффективной среды и на основе макроскопической френелевской магнитооптики для ультратонких слоев, с учетом интерференции лучей, отраженных от границ слоев. Было поведение показано. что спектральных зависимостей ЭЭК не удается описать на основе макроскопической френелевской магнитооптики для ультратонких слоев, в то время как приближение эффективной среды дает хорошее согласование экспериментальных МО спектров с расчетными для системы с наиболее толстыми слоями (х~10 нм) и n=54. По всей видимости, это связано с тем, что слои в исследованных системах не имеют четких границ, что не позволяет описать их поведение в приближении для ультратонких слоев. Размытие границ между

слоями может происходить вследствие взаимной диффузии металла и кремния с образованием силицидов [1,2], а соседние слои в мультислойке могут представлять собой островковые пленки. Образцы с наиболее толстыми слоями возможно рассматривать, как гранулированную (агрегатную) среду, свойства которой хорошо объясняются в приближении Бруггемана. Поведение МО спектров для систем с меньшими толщинами магнитного слоя (х ~1-5 нм) и n=101, 215 не удалось объяснить ни в приближении простой эффективной среды, ни на основе макроскопической френелевской магнитооптики для ультратонких слоев, что свидетельствует о более сложной реальной микроструктуре данных образцов. С одной стороны здесь может в значительно большей степени сказываться влияние на оптические и МО свойства диффузного интерфейса из силицидов, чем в мультислоях с большой толщиной слоев. С другой стороны в образцах с малыми толщинами a-Si в большей степени, чем в мультислоях с толстыми толщинами слоев, может происходить окисление аморфного кремния. Что также в значительной степени изменяет оптические и магнитооптические свойства систем с меньшими хиу.

Полевые зависимости ЭЭК показали, что мультислои с толстыми слоями (х~10 нм) и n=54 насыщаются в полях порядка 100Э. Это происходит из-за того, что слои сплошные, каждый из ФМ благодаря чему слоев намагничивается независимо. Для мультислоев с малыми толщинами, в которых слои являются островковыми, следовало бы ожилать суперпарамагнитное поведение полевых зависимостей. Однако эксперимент показал насышение в полях порядка 1000Э. что свидетельствует о том, что в этих системах ФМ островки или сами касаются друг друга или соединены силицидами, что приводит к росту магнитных кластеров.

На основе экспериментально измеренных оптических постоянных и ЭЭК были рассчитаны диагональные и недиагональные компоненты ТДП. Показано, что в мультислоях существенно изменяются значения, как диагональных, так и недиагональных составляющих ТДП, по сравнению со значениями для чистого сплава CoFeZr. Оптические спектры и спектры недиагональных компонент ТДП также сильно зависят от толщины и числа слоев (рис.2)

В дисперсионных зависимостях ε_l и ε_2 для системы с наиболее толстыми слоями (х~10 нм) проявляются как особенности в ИК области, связанные с вкладом электронов проводимости в СоFeZr слоях, так и особенности в районе 3,7 эВ характерные для межзонных переходов в аморфном кремнии. Для образца с большим содержанием металлической компоненты (f=71,1%) поведение спектров диагональной компоненты, как и спектров ЭЭК, близко к спектрам для чистого сплава CoFeZr. Для систем с меньшими толщинами магнитного слоя (x \sim 1-5 нм) и n=101, 215 особенностей в поведении кривых в области 3,7 эВ, характеризующих межзонные переходы в a-Si, не наблюдается. Что может свидетельствовать об окислении аморфного кремния, которое в значительно большей степени происходит в образцах с меньшими толщинами слоев CoFeZr и a-Si.

Рис.2 Спектральные зависимости действительной ε_l (пустые точки) и мнимой ε_2 (сплошные точки) части диагональной компоненты ТДП.

Полученные экспериментальные данные представляют большой практический интерес для разработки новых материалов с усиленным МО откликом.

Работа выполнена при поддержке РФФИ (гранты № 04-02-16830 и 05-02-17064).

[1] G.J. Strijkers, J.T. Kohlepp, H.J.M. Swagten et al. Phys. Rev. Lett. **84**, 1812 (2000).

[2] R.R. Gareev, D.E. Bugler, M. Buchmeier et al. J. Magn. Magn. Mater. **240**, 235 (2002).

[3] D.E. Burgler, M. Buchmeier, S. Cramm et al. J. Phys.: Condens. Matter 15, S443 (2003).

[4] Dieny B., Sankar S., Cartney M. R. Mc. at al. J.Magn.Magn.Mater, **185**, 283 (1998)

[5] Gan'shina E.A., Granovsky A., Dieny B. at al. Physica B, **299**, 260 (2001).

[6] Ганьшина Е.А. и др. Сборник трудов XIX Международной конференции НМММ, Москва, с.641 (2004).

Статистика вихревых состояний двумерных решеток ферромагнитных нанодисков

С.Н. Вдовичев, Б.А. Грибков, <u>С.А. Гусев</u>, Д.С. Никитушкин, А.А. Фраерман, В.Б. Шевцов. Институт Физики Микроструктур РАН, ГСП-105, Нижний Новгород, Россия e-mail: gusev@jpm.sci-nnov.ru

Периодические двумерные решетки из ферромагнитных наночастиц, размеры которых характерными магнитными сопоставимы с масштабами (толщина доменной стенки, обменная магнитная длина), вызывают к себе двоякий интерес. С практической точки зрения подобные системы, например, интересны, как способ для создания управляемых магнитных полей с пространственной неоднородностью в десятки нанометров [1,2]. Также технически привлекательно существование и v ферромагнитных наночастиц неоднородных распределений намагниченности форме в состояний, вихревых магнитное когда взаимодействие соседних частиц существенно меньше, чем В состоянии с однородной намагниченностью. В совокупности с реальной

возможностью управления знаком завихренности [3,4] (как во всей решетке, так и в отдельной частице) это дает дополнительный шанс для применения двумерных массивов наночастиц в качестве среды для сверхплотной магнитной записи.

С точки зрения фундаментальных исследований искусственные решетки идентичных магнитных частиц, чью форму, размеры и межчастичные расстояния можно с высокой точностью регулировать в процессе изготовления, являются удобным модельным объектом для изучения магнетизма в наносистемах. из направлений таких Одно было предложено исследований нами в предыдущей работе [5], где показана возможность экспериментального наблюдения эффектов

Рис.1. СЭМ микрофотография решеток из нанодисков Со.

магнитной хиральной симметрии в нанодисках с вихревым распределением намагниченности. В общем виде эта задача состоит в исследовании корреляций между направлением завихренности намагниченности, которая лежит в плоскости диска (знак вихря), и направлением поляризации кора вихря (составляющей намагниченности в центре частицы, перпендикулярной плоскости ферромагнитного Направление диска). намагниченности в сердцевине вихря можно задавать предварительным намагничиванием образца до насыщения во внешнем поле, приложенном в направлении перпендикулярном плоскости диска. Тогда экспериментальная задача сводится к определению знака завихренности и подсчету числа левых и правых вихревых распределений. возникающих при снятии внешнего магнитного поля. Данная работа является продолжением этих исследований и направлена на экспериментальное обнаружение закономерностей, влияющих на статистику левых или правых вихревых состояний, что опять же представляет интерес и для практических приложений систем ферромагнитных частиц, если предполагается целенаправленно управлять знаком магнитного вихря в диске.

При формировании периодических решеток ферромагнитных нанодисков (Рис.1) была использована оригинальная методика электронно-лучевой высокоразрешающей литографии [6]. Главная её особенность состоит в использовании фуллерена в качестве негативного электронного резиста. Для переноса рельефа фуллереновой маски и формирования рабочих структур используется комбинированный метод травления: плазмохимическое «сухого» и травление ионами Ar⁺. Толщина слоев С₆₀ обычно составляет 30-100 нм, что диктует необходимость применения технологии двухслойных масок, когда в качестве передающего слоя используются пленки Ті толшиной 20÷50 Рисунок HM. помощью фуллереновой маски с плазмохимического травления атмосфере в фреона сначала переносится в пленку титана, которая в дальнейшем и выполняет роль основной маски при ионном травлении пленки ферромагнитного материала.

экспериментального Для исследования вероятности формирования лево-И распределений правовинтовых вихревых были изготовлены решетки намагниченности кобальтовых дисков, размер, форма и период которых контролируемо варьировалась (Рис.1). Характерные геометрические параметры частиц имели следующие значения: толщина дисков - от 5 до ~55 нм, продольный размер (длина или ширина) – от 50 до 750 нм. Визуализация распределений намагниченности в частицах осушествлялась методом магнитно-силовой микроскопии (МСМ) с применением комплекса сканирующих зондовых микроскопов "Solver PRO" (NT-MDT). Использование этого метода позволяет определить направление завихренности как в эллиптических, так и в круглых дисках [7], наблюдения последних но для требуется проводить измерения во внешнем магнитном поле. В случае же эллиптических частиц ситуация MCM изображение одновихревого проще: состояния без приложения внешнего магнитного поля аналогично изображению магнитного квадруполя, и по расположению белых и черных можно сегментов однозначно определить направление завихренности (Рис. 2). По этой причине в наших экспериментах исследовались решетки овальных кобальтовых дисков, имеющих форму близкую эллиптической (Рис.1). Для предварительного намагничивания частиц при комнатной температуре внешнее поле величиной ~ 20кЭ (что превышает поле насыщения пленки Со ~ 12кЭ) прикладывалось как в плоскости диска (и вдоль, и поперек длинной оси), так и в перпендикулярном направлении. При этом исследовались такие вопросы, как влияние анизотропии формы овальных частиц на их остаточную намагниченность, общее соотношение левых и правых магнитных вихрей вне зависимости от направления намагниченности

Рис. 2. Смоделированные МСМ изображения одновихревых состояний с различным направлением завихренности при заданном распределении намагниченности.

кора, и обнаружение фактов, свидетельствующих о сохранении или нарушении магнитной хиральной симметрии в ферромагнитных нанодисках.

полученные Основные результаты, к настоящему моменту, можно кратко сформулировать следующим образом. Во-первых, определены характерные размеры частиц, для которых основным остаточным состоянием намагниченности является одновихревое. Если малая ось эллиптического Со диска более 300 нм, а соотношение полуосей лежит в диапазоне 1.3÷3, тогда при толщине частиц в диапазоне 5-27 нм устойчивы и вихревое и квазиоднородное состояния намагниченности. При толщине диска более 27-30 нм существует лишь вихревое распределение намагниченности. Если малая ось эллиптического Со диска меньше 300 нм, то при толщине частиц до ~55 нм для устойчивости вихревого состояния соотношение полуосей не должно превосходить значения 2.

вторых, обнаружена зависимость Boотношения количества лево- и правовинтовых вихревых распределений от геометрических размеров частиц. Если для овальных дисков с размерами 750×450 нм и толщиной 30 нм (то же и для 600×400 нм при толщине 50 нм) вероятность возникновения вихрей разного знака практически одинакова, при уменьшении размеров частиц до 350×200 нм (толщина равна 50 нм) отношение левых и правых вихрей равно примерно (90% / 10%). Эти измерения проводились на массивах частиц с общим количеством около 250 штук и при нескольких процедурах предварительного намагничивания. При этом наибольшая ошибка определения количества вихрей одного знака не превышала 3%.

Данное исследование выполнялось в рамках работ по грантам РФФИ (04-02-16827), МНТЦ (2976) и INTAS (03-51-6426, 03-51-4778).

1. D. J. Morgan, J. B. Ketterson. Phys. Rev. Lett. **80**, 3614 (1998).

2. С.Н. Вдовичев, Б.А. Грибков, С.А. Гусев и др. Письма в ЖЭТФ, **80**, *10*, 758 (2004).

3. M. Schneider, H. Hoffmann, J. Zweck. Appl. Phys. Lett. **79**, *19*, 3113 (2001).

4. V.L. Mironov, A. A. Fraerman, B. A. Gribkov et al. Physics, Chemistry and Application of Nanostructures, World Scientific Publishing Co. Pte Ltd (WSPC), p.307-310 (2005).

5. С.Н. Вдовичев, Б.А. Грибков, С.А. Гусев и др. Материалы симпозиума Нанофизика и Наноэлектроника (Н.Новгород, 25--29 марта, 2005), т.1, с. 173-174.

6. S.A. Gusev, L.A. Mazo, S.N. Vdovichev. Physics, Chemistry and Application of Nanostructures, World Scientific Publishing Co.

Pte Ltd (WSPC), p. 471-473 (2005).

7. A.A.Fraerman, L.Belova, B.A.Gribkov et al. Phys. of Low – Dimensional Struct., 2004, № 1/2, p. 35-40.

Ферромагнетизм в слоях GaMnAs, нанесенных методом лазерной эпитаксии

О.В. Вихрова¹, Ю.А. Данилов^{1, 2}, Е.С. Демидов³, Б.Н. Звонков¹, В.И. Ковалев⁴, <u>З.Э. Кунькова⁴</u>, В.В. Подольский¹, М.В. Сапожников², А.И. Сучков⁵, М.П. Темирязева⁴

¹Научно-исследовательский физико-технический институт ННГУ, Нижний Новгород, Россия ²Институт физики микроструктур РАН, Нижний Новгород, Россия

³Нижегородский государственный университет им. Н.И. Лобачевского, Нижний Новгород, Россия ⁴Фрязинский филиал Института радиотехники и электроники РАН, Фрязино, Россия

⁵Институт химии высокочистых веществ РАН, Нижний Новгород, Россия

e-mail: <u>zek@ms.ire.rssi.ru</u>

с интенсивным B связи развитием спинтроники значительный интерес вызывают разработка методов формирования И исследование свойств разбавленных магнитных полупроводников, в частности, соединений А³В⁵, легированных Mn до концентраций, значительно превышающих предел растворимости примеси [1]. В данной работе слои GaMnAs выращивались на подложках полуизолирующего GaAs (100) методом лазерной эпитаксии. Выращивание осуществлялось в реакторе МОСгидридной эпитаксии при давлении порядка 50 Торр в потоке арсина. В качестве мишеней использованы нелегированный GaAs И металлический Mn. Для испарения использовался импульсный АИГ:Nd лазер (λ = 1.06 мкм), работающий в режиме модулированной добротности. Автоматизированная система позволяла совершать оптическая круговое движение лазерного пучка на каждой мишени и периодическое переключение его с мишени GaAs на Mn мишень. Варьировались интенсивность лазерного пучка, соотношение времен поочередного распыления GaAs и Mn $(X_{Mn} = t_{Mn}/t_{GaAs})$ и температура подложки (в пределах от 300 до 650°С). Общая толщина нанесенных слоев составляла ≈ 40 ÷ 100 нм. Состав выращенных слоев был оценен методом микроанализа рентгеноспектрального при энергии электронов 25 кэВ.

Измерения эллипсометрических спектров в 1.4-3.5 диапазоне эΒ показали, что нелегированные пленки GaAs, нанесенные лазерным методом, сохраняют основные особенности, характерные для переходов в области энергий квантов света, больших ширины полупроводника. запрещенной зоны Регистрируется характерный двойной максимум, соответствующий прямым переходам $\Lambda_{3v} \rightarrow \Lambda_{lc}$ из валентной зоны в зону проводимости, с энергиями пиков 2.95 и 3.17 эВ. Дублетный характер максимума обусловлен спинорбитальным расщеплением. С увеличением концентрации марганца в пленках наблюдается постепенное размытие и исчезновение пиков

дублета, вызванное структурным разупорядочением полупроводника.

эффект Магнитооптический Keppa, измеряемый при комнатной температуре в меридиональной геометрии (внешнее магнитное поле Н приложено вдоль поверхности образца и параллельно плоскости падения света), показал наличие петли гистерезиса на зависимости угла поворота поляризации от величины Н. Величина коэрцитивного поля H_c зависела как от содержания марганца, так и от температуры нанесения слоев T_g (рис.1, кривая 1). В частности, для слоев GaMnAs, выращенных при 400°С, значение H_c составило 390 Э при $X_{Mn} = 0.5$ и 480 Э при $X_{Mn} = 0.67$. Минимальное значение коэрцитивного поля (310 Э при $X_{Mn} = 0.67$) отмечено для $T_g = 450^{\circ}$ С, а при увеличении или уменьшении температуры выращивания до значений 600°С и 350°С, соответственно, величина H_c возрастала до ≈ 600 Э. Обнаружена сильная анизотропия гистерезисных кривых при изменении направления Н в плоскости образца (рис.1, кривая 2).

Рис.1. Зависимости коэрцитивного поля в эффекте Керра (левая шкала) и отношения коэрцитивных полей в двух взаимно перпендикулярных направлениях (правая шкала) от температуры выращивания слоев GaAs:Mn. *X_{Mn}* = 0.67.

В качестве величины, характеризующей анизотропию намагничивания, нами принято отношение коэрцитивных полей в двух взаимно перпендикулярных направлениях в плоскости образца H_c/H_c^p . Эта величина зависела от T_g , причем ход зависимости был подобен $H_c(T_g)$.

Измерения, выполненные на частоте 9.3 ГГц с помощью ЭПР-спектрометра при температурах 77 и 300 К, показали существенное СВЧ-поглощение, зависящее от магнитного поля, температуры и ориентации образца по отношению к *H*, характерное для ферромагнитного резонанса.

Электрические измерения включали исследование температурной зависимости слоевого сопротивления слоев R_s и изучение зависимости холловского сопротивления R_{xy} от величины внешнего магнитного поля (приложено перпендикулярно поверхности). При всех выбранных условиях выращивания слои *р-*тип проводимости. Для слоев, имеют выращенных при $T_g > 350$ °C, зависимости R_{xy} от Н являются линейными, что позволяет рассчитать холловские параметры: концентрацию дырок р и их подвижность µ. Так для образца, выращенного при $T_g = 450$ °C, $p = 1.5 \times 10^{19}$ см⁻³ и $\mu = 7$ см²/В·с. Для образцов, выращенных при $T_g \leq 350^{\circ}$ С, эффект Холла является аномальным как при комнатной температуре измерений, так и при 77К, а магнетосопротивление – отрицательное (при 77К $\Delta R/R \approx 4 \times 10^{-4}$ в поле 0.36 T).

Зависимости структур от температуры измерений показаны на рис.2.

Рис.2. Температурные зависимости сопротивления слоев: $1 - T_g = 350^{\circ}$ С, $X_{Mn} = 0.33$; $2 - T_g = 350^{\circ}$ С, $X_{Mn} = 0.2$; $3 - T_g = 310^{\circ}$ С, $X_{Mn} = 0.2$.

Обращает на себя внимание значительное снижение R при T< 320 K. Такое поведение характерно для слоев MnAs, нанесенных методом молекулярно-лучевой эпитаксии [2].

С помощью зондового микроскопа «Смена» (производства фирмы NT-MDT, Зеленоград) изучена морфология поверхности и магнитный рельеф выращенных слоев. Морфология выращенных слоев характеризуется неровностями, свойственными методу лазерного нанесения. МСМ-изображения, приведенные на рис.3 (а-с), демонстрируют доменную структуру в виде чередующихся светлых и темных полос с периодом около 25 мкм. Ориентация полос сохраняется в пределах образца (6×6 мм²). Невысокий контраст изображения обусловлен, по-видимому, преимущественной ориентацией вектора намагниченности в плоскости образца.

Рис.3. Рис.3. Изображение фрагмента доменной структуры слоя GaAs:Mn, полученное в МСМмоде при $T \approx 293$ К ($T_g = 400^{\circ}$ C, $X_{Mn} = 0.67$; толщина слоя 100 нм). Внешнее магнитное поле перпендикулярно оси легкого намагничивания. а) H = 0; b) H = 20 Э; c) H = 60 Э. Размеры области сканирования 58×58 мкм².

При приложении внешнего магнитного поля, параллельного исходной ориентации доменов (т.е., вдоль оси легкого намагничивания), при $H \approx 20$ Э полосы исчезают, что соответствует переходу образца в монодоменное состояние. Во внешнем магнитном поле, перпендикулярном начальной ориентации доменов, происходит поворот доменов к направлению поля (рис.3b,c). Наблюдается также сужение темных полос и снижение контраста изображения.

Авторам известны лишь две публикации, в которых сообщается о наблюдении доменной структуры в слоях GaMnAs [3, 4]. В [3] доменная структура наблюдалась при T = 3 и 20 К. Температура Кюри не превышала 90 К. В [4] крупные домены, размером в сотни мкм, наблюдались при T = 15 и 35 К; T_C равнялась 60 К. Таким образом, в данной работе впервые наблюдалась доменная структура в слоях GaMnAs при комнатной температуре.

Работа выполнена при поддержке гранта РФФИ 05-02-16624.

[1] Matsukura, F., Ohno, H., Shen, A., Sugawara, Y., Phys. Rev. B, **57**, R2037 (1998).

[2] Berry, J.J., Potashnik, S.J., Chun, S.H., Ku, K.C., Schiffer, P., Samarth, N., Phys. Rev.B, **64**, 052408 (2001).

[3] Fukumura ,T., Shono, T., Inaba, K., Hasegava, T., Koinuma, H., Matsukura, F., Ohno, H., Physica E, **10**, 135 (2001).

[4] Welp, U., Vlasko-Vlasov, V.K., Liu, X., Furduna, J.K., Wojtowicz, T., Phys. Rev. Lett., **90**, 167206 (2003).

Лазерно осаждённые наноразмерные ферромагнитные эпитаксиальные слои на основе германия и кремния, пересыщенных примесями группы железа

<u>Е.С.Демидов¹⁾</u>, Ю.А.Данилов¹⁻³⁾, В.В.Подольский^{2, 3)}, А.А..Фраерман³⁾,

M.B.Cапожников³, В.П.Лесников^{2, 3)}, Д.М.Дружнов¹

¹⁾Нижегородский государственный университет им.Н.И.Лобачевского,

Нижний Новгород, 603950 Россия

²⁾Научно-исследовательский физико-технический институт ННГУ, Нижний Новгород, 603950 Россия ³⁾Институт физики микроструктур РАН, Нижний Новгород, 603950 Россия demidov@phys.unn.ru

Для спинтроники, совместимой с наиболее кремниевой распространённой твердотельной электроникой, представляют особенный интерес разбавленные магнитные полупроводники (РМП) 3d-примесями на основе легированных элементарных полупроводников Ge И Si. Авторами [1] методом молекулярно-лучевого осаждения были получены эпитаксиальные слои Ge:Mn с 5% марганца, в которых по нелинейной и гистерезисной зависимости намагниченности и эффекта Холла от магнитного поля до 116К наблюдались признаки ферромагнетизма. B работе [2] вплоть до 400К наблюдался ферромагнетизм в тонких слоях кремния с 0.8% марганца, введённого ионной имплантацией этой примеси. Важно отметить, что вариант синтеза ферромагнитного кремния с примесью марганца является уникальным. Из всех силицидов только железо с кремнием образует ферромагнитные сплавы. В настоящем сообщении впервые результаты метода применения приводятся осаждением из лазерной плазмы эпитаксиальных слоёв Ge иSi толщиной 50-100 HM. пересыщенных марганцем или железом. Ранее этот метод был успешно применен для получения эпитаксиальных слоёв GaSb, InSb и InAs пересыщенных примесью марганца, в которых до 500 К ярко проявлялись признаки ферромагнетизма [3,4]. Характерные для лазерной технологии сверхбыстрые кристаллизация и закалка, нанометровая толщина слоёв и ориентирующее влияние подложки сверхпересыщение обеспечивают твёрдого раствора 3d-примесью. Ферромагнетизм плёнок Ge или Si c 3d – примесью проявился в наблюдениях при температурах 77-500K эффекта аномального Холла (АЭХ), ферромагнитного резонанса (ФМР) и эффекта Керра.

Выбор марганца и железа в качестве легирующих примесей был сделан на основе прежде выведенных в [5] закономерностей в уровнях перезарядки 3d-примесей в алмазоподобных полупроводниках. Приведённая согласно [5] схема уровней перезарядки на рис.1 показывает, что Mn и Fe действуют в Ge и Si как мелкие акцепторы, поставляющие максимальную концентрацию дырок в валентную зону. При этом возможно высокоспиновое половинное или почти половинное заполнение 3d- оболочки примесных ионов марганца или железа. Это важно для РККИ ферромагнитного обменного взаимодействия между магнитными 3d- ионами.

Рис.1 Схема уровней перезарядки 3d- ионов замещения Me_s в Ge и Si согласно [5]. Ломаными линиями показаны не расщеплённые кристаллическим полем уровни, тонкие линии – акцепторные, толстые – донорные уровни. Круглыми точками показаны предполагаемые по аналогии с A³B⁵ акцепторные уровни с учётом кристаллического расщепления.

Лазерного напыление слоёв производилось 200-480°C подогретые пластины на до кремния полуизолирующего GaAs, ипи сапфира. Содержание 3dпримеси контролировалось рентгеноспектральным анализом с электронным возбуждением. Исследование магнитных и транспортных свойств проводились теми же методами, что и в [3,4].

Во всех трёх вариантах Ge:Mn, Si:Mn и введение Si:Fe 3d-примеси привело к существенной дырочной проводимости. Характерный для ферромагнетиков АЭХ при 77К проявлялся в Ge:Mn, Si:Mn и Si:Fe в виде нелинейной и гистерезисной зависимости постоянной Холла R_н от индукции магнитного поля В. Ярко выраженный АЭХ для слоёв РМП Ge:Мп с рентгеноспектральным содержанием марганца N_{Mn}=13% и Si:Mn с N_{Mn}=15% показан на рис.2. Согласно данным измерений плёнки имеют при 293К следующие параметры. Для Ge:Mn концентрация дырок p=6.6·10¹⁹ см⁻³, их подвижность µ=23 см²/В·с, ρ =0,004 Ом·см, для Si:Mn p=7.5·10²⁰ см⁻³, µ=33 см²/В·с, ρ =0,00025 Ом·см. Как видно, в обоих случаях марганец проявляет поразительно высокую электрическую активность как мелкий акцептор с концентрацией привносимых дырок p≈10²⁰-10²¹ см⁻³ до 10% введённой большой доли марганца. При таких р энергия Ферми ≈0.1-0.3 эВ, что много больше kT при 300К и необходимо для ферромагнетизма по механизму РККИ.

Рис.2 Магнитно-полевые зависимости постоянной Холла R_H и угла вращения А поляризации света в эффекте Керра (КЕ) эпитаксиальных плёнок Si:Mn толщиной 50 нм и R_H Ge:Mn толщиной 110 нм при комнатной температуре. Для R_H Si:Mn масштаб по вертикали увеличен в 10 раз.

В Si:Mn подвижность дырок в полтора раза выше, чем в Ge:Mn, где их в единице объёма на порядок меньше. Ферромагнетизм кремниевых слоёв Si:Mn при 300К также подтверждается эффектом Керра на рис.2.

Спектры ФМР тех же образцов Ge:Mn и Si:Мп приведены на рис.3. Анизотропия спектров согласуется с действием размагничивающих факторов плоского образца. В случае Ge:Mn одиночная линия ФМР с ростом температуры плавно переходит в электронный парамагнитный резонанс (ЭПР) при ≈420К. В варианте Si:Mn спектр ФМР состоит из двух резонансных пиков, вероятно, из-за наличия доменной структуры плёнки РФП [6]. Предварительные измерения показали, что ФМР слоёв Si:Мп имеет место до ≈500К. Согласно данным ФМР концентрация магнитных ионов Mn при 300К в Ge составляет 1.16·10²¹ см⁻³ или 2.6% атомного содержания марганца. Аналогичные оценки для Si:Mn на рис.3 дают N_{Mn} =4.6·10²¹см⁻³ или долю марганца ≈9%, что существенно выше, чем в слоях Ge:Мп и составляет около двух третей от 15% рентгеноспектральной доли этой примеси. По данным ФМР при 77К практически весь марганец кремниевых плёнках оказался В магнитоактивным.

Рис.3 Первые производные спектров поглошения ΦMP эпитаксиальных плёнок Si:Mn толщиной 50 нм и Ge:Mn толщиной 110 нм. Цифры у кривых в середине показывают угол в градусах между плоскостью образца и полем, цифры справа – температура в градусах Кельвина. Верхние шесть кривых для образца ориентированного перпендикулярно Ge:Mn, полю.

В заключении отметим, что в случаях Ge:Fe и Si:Fe получены обнадёживающие результаты на подложках монокристаллического сапфира. АЭХ и ФМР ярко проявились при 77К. Слои Si:Fe показали более сильный ферромагнетизм, чем Ge:Fe.

Работа выполнена при поддержке программы Университеты России 2005 г. (проект № 513), Программы РАН "Спинзависимые эффекты в твердых телах и спинтроника" и гранта РФФИ № 05-02-17362.

[1] Y.D. Park, A.T. Hanbicki, S.C. Erwin, C.S. Hellberg, J.M. Sullivan, J.E. Mattson, T.F. Ambrose, A. Wilson, G. Spanos, B.T. Jonker, Science, **295**, 00368075 (2002).

[2] M. Bolduc, C. Awo-Affouda, A. Stollenwerk, M.B. Huang, F.G. Ramos, G. Angello, V.P. LaBella, Phys. Rev. B **71**, 033302 (2005).

[3] Ю.А. Данилов, Е.С. Демидов, Ю.Н. Дроздов, В.П. Лесников, В.В. Подольский, ФТП, **39**, 8 (2005).

[4] Yu.A. Danilov, E.S. Demidov, Yu.N. Drozdov, V.P. Lesnikov, V.V. Podolskii, M.V. Sapozhnikov,

A.P. Kasatkin, J. Magn. Magn. Materials, in print (2006).

[5] Е.С. Демидовб ФТТ, **34**, 37 (1992).

[6] Г.В. Скроцкий, Л.В. Курбатов,

Феноменологическая теория ферромагнитного

резонанса, гл. II в кн. Ферромагнитный

резонанс, под ред. С. В. Вонсовского, ФМЛ, М., 1961, §6, С. 59-63.

Электронная структура монослоя Fe на поверхности Si(111)

Ю.М. Коротеев

Институт физики прочности и материаловедения СО РАН, пр. Академический 2/1, Томск, Россия

Исследование свойств поверхности кремния c адсорбированными слоями переходных металлов представляют интерес, как с технологической, так и с чисто научной точки зрения. Это связано с использованием силицидов переходных металлов в опто-И микроэлектронике. Одной наиболее ИЗ интересных особенностей силицидов переходных металлов является то, что в дополнение объемным фазам к [1], эпитаксиальное выращивание на кремниевой подложке позволяет получать устойчивые состояния метастабильных фаз [2], обладающих свойствами, отсутствующими в объёмных материалах. Такая устойчивость обусловлена хорошим соответствием (~2-6%) параметров решетки этих фаз и субстрата.

Поверхность Si(111) наиболее часто используется экспериментальных в исследованиях, так как ее легче всего получить при раскалывании кристалла. Свежесколотая поверхность Si(111) испытывает реконструкцию (2×1) [3], которая после отжига необратимо переходит в реконструкцию (7×7) [4]. При высоких температурах (Т~1150 К) структура (7×7) обратимо переходит в структуру (1×1) , отвечающую симметрии атомных плоскостей в объёме кристалла [5]. Фаза (1×1) может быть стабилизирована при комнатной температуре быстрым охлаждением [6], лазерным отжигом [7] или небольшим количеством таких адсорбатов, как Cl [8], Te [9], Fe,Co,Ni [10]. Как показано в работе [10], осаждение на поверхности Si(111) при комнатной температуре таких переходных металлов, как Fe, Co и Ni приводит к формированию сложной последовательности поверхностных атомных структур, зависящей от толщины покрытия и температуры последующего отжига. При температурах отжига от 0°С до 500°С в области покрытий от 0.3 монослоя и выше наблюдается наиболее простая поверхностная структура (1×1). Она и является предметом рассмотрения настоящей работы.

Полнопотенциальным пленочным методом линеаризованных присоединенных плоских волн в рамках теории функционала плотности с использованием обобщенного градиентного приближения выполнены самосогласованные спин-поляризованные первопринципные расчеты электронной и магнитной структуры монослоя атомов Fe на поверхности десятислойной пленки Si(111)(1×1).

На первом этапе была рассчитана релаксация поверхностных слоев пленки

Si(111)(1×1). Проведенные расчёты показали, что она быстро затухает в объем образца и для пленок из 18 и 10 слоёв имеет одинаковые значения: поджатие первого межслоевого расстояния на 0.148Å (-18.7%) и расширение второго межслоевого расстояния на 0.025Å (1.06%). Динамические расчеты дифракции медленных электронов [7,9] свидетельствуют о сокращении первого межслоевого расстояния на 0.16Å, что хорошо согласуется с полученной нами величиной. На втором этапе были определены наиболее вероятные положения адсорбции атомов Fe. В качестве возможных рассмотрены: положений адсорбции были положение над атомами первого, второго и четвёртого от поверхности слоёв. Первое из них обычно называют atop site (A), а два последующих - centered sites (С). Положение адсорбции над атомом второго слоя обозначим C_1 , а четвёртого - C_2 .

Рассчитаны изменения полной энергии E_{tot} как функции расстояния адатомов (d) от поверхности. Минимальные значения E_{tot} и соответствующие им величины d и магнитного момента m в МТ-сфере железа для различных положений адсорбата приведены в таблице 1.

site	А	C_1	C_2
<i>d</i> (Å)	2.35	1.55	0.25
E _{tot} (эB)	4.22	2.85	0
m	3.04	2.71	0.57

Видно, что энергетически наиболее выгодной является адсорбция в положении С2, когда атом Fe расположен над атомом кремния, лежащим в четверном от поверхности слое. Отметим, что расстояние между атомом Si поверхностного слоя и адсорбатом в положении А равно длине связи объёмного кремния (2.35 Å), а расстояние между атомом Si подповерхностного слоя и адсорбатом в положении C₁ (2.33 Å) немного меньше этой величины. Расстояние между поверхностным слоем и слоем адсорбота в положении C₂ равно 0.25 Å, что значительно соответствующего меньше межслоевого расстояния в нерелаксированной плёнке Si(111) (0.78 Å). Длинна связи Fe-Si между атомами этих слоёв равна 2.25 Å. Адсорбция атомов Fe в положении С2 приводит к почти полному исчезновению релаксации поверхностных слоёв кремниевой подложки. Это говорит о том, что адсорбция уже одного монослоя атомов железа полностью экранирует влияние поверхности на атомную структуру кремниевой подложки. Из таблицы 1 видно, что мере приближения к

поверхности атомы железа теряют свой момент. "мёртвого" магнитный Наличие магнитного слоя наблюдалось в работах [11,12] при изучении магнитных свойств системы Co/Si. Исследования магнитных свойств системы Fe/Nb/Fe [13] показали, что ферромагнетизм в слоях железа возникает только при толщинах Fe больших 7 Å. Этот эффект был объяснён наличием «мертвого» в магнитном отношении слоя железа на интерфейсе Nb/Fe, возникающего вследствие интердиффузии атомов железа и ниобия. Рассчитанное значение работы выхода системы Fe/Si(111) (4.59 эВ) почти не изменилось по сравнению с соответствующей величиной чистой поверхности Si(111) (4.63 эВ).

Далее будем обсуждать только адсорбцию железа в положении C₂. На Рис. 1 приведена плотность электронных состояний для поверхностного слоя пленок Si(111) и Fe/Si(111), а также адсорбированного слоя железа для и пленки Fe/Si(111). В нижней панели рисунка на

Рис. 1 Плотность электронных состояний (DOS) для адсорбированного (Fe) и поверхностного (S) слоя пленок Fe/Si(111) и Si(111). Штриховая линия представляет DOS поверхностного слоя пленки Si(111). Сплошная и пунктирная линии показывают DOS пленки Fe/Si(111) для электронов спинов co вверх И вниз. соответственно.

уровне Ферми хорошо видна зона поверхностных состояний чистой плёнки Si(111). Адсорбция железа приводит к исчезновению этой зоны, и в поверхностном слое системы Fe/Si(111) пик плотности состояний на уровне Ферми уже отсутствует. Однако адсорбированном слое в окрестности уровня Ферми появляется широкая зона электронных состояний адсорбата. Высокое значение плотности состояний в адсорбированном слое на уровне Ферми означает, что поверхность пленки Si(111) с монослойным покрытием железа имеет металлический характер проводимости.

Таким образом, проведенные расчеты показали, что осаждение одного монослоя железа на не реконструированную поверхность Si(111) приводит к значительному изменению как свойств адсорбата, так и самой поверхности.

- [1] Binnary Alloy Phase Diagrams, ed. T.B.
- Massalski, vol. 2, p. 1108, (ASM International, Materials Park OH, 1986)
- [2] von Känel, H., Mäder, K.A., Müller, E., Onda,
- N., Sirringhaus, H., Phys. Rev. B, 45, 13807 (1993)
- [3] Lander, J.J., Gobeli, G.W., Morrison, J., J.
- Appl. Phys., 34, 2298 (1963)
- [4] Schlier, R.E., Fabsworth H.E., J. Chem. Phys., **30**, 917 (1959)
- [5] Cander, J.J., Surf. Sci. 1, 125 (1964)
- [6] Hagstrum, H.D., Becker, G.D., Phys. Rev. B, 8, 1580 (1973)
- [7] Zehner, D.M., Noonan, J.R., Davis, H.L.,
- White, C.W., J. Vac. Sci., 18, 852 (1981)
- [8] Florio, J.V., Robertson, W.D., Surf. Sci. 24, 173 (1971)
- [9] Shih, H.D., Jonna, F., Jepsen, D.W., Marcus
- P.M., Phys. Rev. Lett., **37**, 1622 (1976)
- [10] Dolbak, A.E., Olshanetsky, B.Z., Teys, S.A., Zhachuk R.A., Phys. Low-Dim. Struct., **7/8**, 175
- (1998)
- [11] Tsay, J.S., Yang, C.S., Liou, Y., Yao, Y.D., J. Appl. Phys., **85**, 4967 (1999)
- [12] Li, M., Wang, G.-C., J. Vac. Sci. Technol.,
- A14, 3288 (1996)
- [13] Mühge Th., Garif'yanov N.N., Goryunov
- Yu.V. et al., Phys.Rev.Lett. 77, 1857 (1996)

Стимуляция ферромагнитного состояния на поверхности палладия сильным электрическим полем

А.С. Коршунов, Ю.Б. Кудасов

Российский Федеральный Ядерный Центр – ВНИИЭФ, пр. Мира 37, Саров, 607188, Россия e-mail: <u>kudasov@ntc.vniief.ru</u>

Магнитоэлектрический эффект, те изменение намагниченности под действием электрического поля, привлекает значительное внимание благодаря возможному применению в [1]. Значительный спинтронике магнитоэлектрический эффект наблюдается в объемных соединениях с неколлинеарной магнитной структурой также [2], а в системе сверхпроводник - обычный проводник данной сверхпроводник [3]. В работе предлагается использовать электрическое поле для стимуляции ферромагнитного (ΦM) состояния поверхностного слоя почти ферромагнитного металла.

В теории зонного магнетизма переход парамагнитного ΦМ металла в фазу определяется критерием Стонера [4] $I\rho(\varepsilon_F) > 1$, гле Ι параметр межэлектронного взаимодействия, $\rho(\varepsilon_{F})$ - плотность состояний (DOS) на уровне Ферми. Палладий является хорошо известным примером почти ферромагнитного металла, в котором, критерий Стонера хотя и не выполняется, но величина $I\rho(\varepsilon_{F})$ близка к единице. Почти ферромагнитное состояние палладия сопровождается усилением значительным магнитной восприимчивости [4]. Кроме того, при введении небольшого количества магнитных примесей, например 0.1-0.2 at% кобальта или железа, он становится ферромагнитным [4]. Предполагается также, что в сильных магнитных полях в палладии должен произойти метамагнитный переход ФМ фазу [5]. Таким образом, палладий находится очень близко к переходу в ФМ фазу, и слабые изменения электронной структуры могут стимулировать этот переход.

Хорошо известно, что в DOS палладия имеется пик, лежащий непосредственно под уровнем Ферми [6]. На рис. 1 приведены результаты расчета DOS палладия (ГЦК, размер ячейки a = 3.89 Å), выполненный полноэлектронным методом линеаризованных присоединенных плоских волн (FPLAPW) с использованием пакетов программ Wien2K [7] и XCrysDen [8]. Расчетная сетка в неприводимой части зоны Бриллюэна содержала 1540 точек; обменно-корреляционный потенциал вычислялся в приближении GGA PBE [9]. Согласно оценкам [4] $I\rho(\varepsilon_{\rm F})$ составляет примерно 0.9. Таким образом, увеличение DOS объемного палладия всего на 10 % должно привести к выполнению критерия Стонера и к переходу в ФМ состояние. Из рис. 1 видно, что понижение уровня Ферми влечет за собой увеличение DOS, и уже при незначительном смещение уровня Ферми критерий Стонера будет выполнен (пунктирная линия).

уровня Понижение Ферми означает появление избыточных дырок. Допирование поверхностных слоев электрическим полем для исследования успешно применяется высокотемпературных сверхпроводников И молекулярных кристаллов [10]. На вставке к рис. 1 схематично изображена простейшая структура для исследования эффекта электрического поля на поверхность палладия, аналогична структуре которая полевого транзистора. Слой палладия отделяется от металлического затвора тонкой прослойкой диэлектрика, например BaO, MgO или Al₂O₃. При подаче на затвор отрицательного потенциала поверхностный слой палладия оказывается обогащенным дырками. Можно считать, что все избыточные дырки находятся в поверхностном монослое палладия. В этом случае плотность избыточных дырок на одну элементарную ячейку в поверхностном монослое составляет $n_h = \varepsilon \varepsilon_0 S_c U / (e_0 d),$ где ε диэлектрическая проницаемость диэлектрика (ε≈10 для MgO и Al₂O₃, ε=14.4 для BaO), ε₀диэлектрическая проницаемость вакуума, U – напряжение на затворе, *e*₀ – единичный заряд, *d* – толщина слоя диэлектрика, S_c – площадь элементарной ячейки (15.1 Å² в плоскости Pd (001)). Для BaO получаем, что $n_{\rm h} \approx 1.2 U/d$, где U выражается в вольтах, а d - в ангстремах.

Если предположить, что DOS на поверхности палладия не сильно отличается от объемного DOS, то плотность избыточных дырок, необходимых для увеличения плотности 10 %, можно состояний на оценить, проинтегрировав ее между сплошной И пунктирной линией на рис. 1. Тогда получаем, что $n_{\rm h} \approx 0.05$, откуда следует оценка напряжения на затворе, при котором будет выполнен критерий Стонера. Она составляет 3 В при толщине изолятора d = 50 Å. Такое напряжение затвора вполне достижимо [10].

Для уточнения этой оценки нами был выполнен расчет плотности состояний поверхности палладия. Расчет проводился в суперячейке, состоящей из 9 монослоев палладия и 5 пустых слоев. Расчетная сетка в неприводимой части зоны Бриллюэна содержала

Рис. 1. DOS палладия. Сплошная линия – уровень Ферми, пунктирная – смещенный уровень Ферми, при котором DOS увеличивается на 10 %. На вставке - ячейка для исследования эффекта поля: 1 - затвор, 2 – изолятор, 3 – палладий.

45 точек. Результаты расчета приведены на рис. 2. DOS на уровне Ферми в поверхностном слое (линия 1) оказывается ниже объемного значения, и его смещение должно быть более сильным. Считая, что между слоями палладия находиться вакуум ($\varepsilon = 1$), оценка напряжения на затворе в этом случае составляет порядка 30 В для d = 5 Å. Это напряжение недостижимо в эксперименте, поэтому для его понижения надо либо уменьшить величину d, либо ввести между слоями палладия диэлектрик со значительным є. Для этого хорошо подходит BaO, поскольку его $\varepsilon = 14.4$ и он имеет сопоставимую с Pd ячейку, что немаловажно при выращивании структуры. Нами был выполнен расчет плотности состояний поверхности палладия. Расчет проводился в суперячейке, представленой на рис. 3. Атомы палладия представлены белыми шариками, кислорода – черными, бария – серыми. Расчетная сетка в неприводимой части зоны Бриллюэна также содержала 45 точек. Результаты расчета приведены на рис. 3. DOS на уровне Ферми в поверхностном слое (линия 1) оказывается также ниже объемного значения. Оценка напряжения на затворе в этом случае составляет порядка 12 В для *d* =50 Å.

Если слой палладия представляет собой тонкую пленку, размер ее элементарной ячейки может заметно отличаться от объемной. Как показали исследования слоистых структур Au-Pd растяжение пленки приводит [11], к существенному увеличению $I\rho(\varepsilon_{F}),$ что с данными по согласуется исследованию магнитной восприимчивости палладия пол давлением [12]. Таким образом, в пленочных структурах можно лобиться снижения порогового напряжения затвора, при котором происходит переход пленки в ФМ фазу.

Расчеты, выполненный выше, показывают, что практически невозможно индуцировать ФМ порядок на поверхности палладия в вакуумном зазоре. На интерфейсе Pd/BaO для получения ФМ порядка требуются высокие, но экспериментально достижимые напряжения.

Авторы признательны В. М. Уздину и Б. Хорвардсону (B.Hjörvarsson) за полезные

Рис. 2. DOS суперячейки: 1 – DOS поверхности, 2 – внутреннего слоя. На вставке - изображение суперячейки: 9 слоев палладия и 5 пустых.

Рис. 3. DOS суперячейки: 1 – DOS внешнего, 2 – внутреннего слоя Pd. На вставке - структура суперячейки, состоящей из 5 монослоев Pd и 5 монослоев BaO.

дискуссии. Работа частично поддержана в рамках проекта INTAS №03-51-4778.

- I.Zutic, J.Fabian, S. Das Sarma, Rev. Mod. Phys. 76, 323 (2004)
- [2]. H.Katsura, N.Nagaosa, A.V.Balatsky, Phys. Rev. Lett. 95, 57205 (2005)
- [3]. F.Giazotto, F.Taddei, R.Fazio, F.Beltram, Phys. Rev. Lett. 95, 66804 (2005)
- [4]. P. Fazekas, *Electron Correlation and Magnetism*, World Scientific, Singapore, 1999
- [5]. Р.З.Левитин, А.С.Маркосян, УФН **155**, 553 (1988)
- [6]. N.Takano, T.Kai, K.Shiiki, and F.Terasaki, Solid State Commun. **97**, 153 (1997)
- [7]. P. Blaha, K.Schwarz, P.Sorantin, and S.B.Trickey, Comput. Phys. Commun. 59, 339 (1990)
- [8]. T.Kokalj, J. Mol. Graphics Modelling 17, 176 (1999)
- [9]. J.P.Perdew, K.Burke, and M.Ernzerhof, Phys. Rev. Lett. 77, 3865 (1996)
- [10]. P.Konsin and B.Sorkin, Phys. Rev. B 58, 5795 (1998)
- [11]. M.B.Brodsky, Jour. Appl. Phys. 52, 1665 (1981)
- [12]. W.Gerhardt, F.Razavi, J.S.Schilling, and *et. al.*, Phys. Rev. B **24**, 6744 (1981)

Кривая намагниченности треугольной решетки изинговских цепочек

Ю.Б. Кудасов

Российский Федеральный Ядерный Центр – ВНИИЭФ, пр. Мира 37, Саров, 607188, Россия e-mail: <u>kudasov@ntc.vniief.ru</u>

Среди спин-цепочечных соединений $Ca_3Co_2O_6$ значительный вызвает интерес благодоря сложному магнитному поведению [1-10]. Наиболее удивительным результатом, наблюдаемым в Са₃Со₂О₆, является ступенчатая кривая намагниченности [2,3,5]. Число ступеней и их форма зависят существенно от температуры и скорости нарастания магнитного поля. Две наблюдаются в температурном ступени диапазоне от 12 К до 25 К [5]. Первая ступень возникает при нулевом магнитном поле. намагниченность достигает при этом 1/3 полной намагниченности. Затем наманиченность остается постоянной до 3.6 Тл, где происходит переход в полностью намагниченное состояние. По меньшей мере 4 ступеньки наблюдаются ниже 10 К. Они сопровождаются значительным Аналогичные гистерезисом. явления наблюдаются в других спин-цепочечных соединениях, например, в Ca₃CoRhO₆ [6].

Структура Са₃Со₂О₆ состоит из цепочек Со₂О₆, направленных вдоль оси *с*. Цепочки образованы чередующимися тригональными призмами и октаэдрами СоО₆ с общими гранями. Кристаллическое поле расщепляет уровень иона Со³⁺ на высокоспиновое (S=0) и низкоспиновое (S=2) состояния. Те ионы Co^{3+} , которые расположены в тригональных позициях (CoI), находятся в высокоспиновом состоянии, а в октаэдрическом окружении (CoII) _ в низкоспиновом состоянии. Кристаллическое поле приводит также к изинговской анизотропии CoI позиций. Цепочки Co_2O_6 образуют треугольную решетку плоскости В ah перпендикулярной цепочкам. Ферромагнитный (ФМ) обмен внутри цепочек через октаэдры с немагнитными ионами CoII приводит к появлению ФМ порядка внутри цепочек при температурах ниже 40 К. Антиферромагнитный (АФМ) межцепочечный обмен значительно слабее. Частичный АФМ порядок возникает ниже 24 К. Слабые особенности, связанные, скорее всего. с переходом в новое межцепочечное упорядочение, наблюдается около 12 K. Этот сценарий магнитных взаимодействий в Ca₃Co₂O₆ согласуется с результатами рентгеновской фотоэмиссионной рассеяния спектроскопии, нейтронов, измерениями намагниченности и удельной теплоемкости, ядерного магнитного резонанса и теоретических расчетов непрямого взаимодействия между CoI узлами [7].

В данной работе предлагается модель ступенчатой намагниченности Ca₃Co₂O₆ при низкой температуре. Сильное внутрицепочечное

ФМ взаимодействие позволяет рассматривать цепочки Co₂O₆ как единый жесткий магнитный момент. Существует только две проекции спина цепочки на ось *с* из-за изинговской анизотропии. Включив АФМ связь между ближайшими цепочками, мы приходим к модели Изинга на треугольной решетке.

Сильная зависимость формы кривой намагниченности от скорости нарастания магнитного поля и температуры показывает, что состояние системы цепочечных спинов находится вдали от равновесия. Мы выполняем исследование эволюции системы, используя спин-флип методику, которая применялась ранее для изучения неравновесной динамики АФМ модели Изинга на треугольной решетке [8]. В отличие от [8], где спин-флип методика использовалась для численных расчетах методом Монте-Карло, мы исследуем эволюцию системы аналитически. Детальное описание техники вычисления приведено в работе [7].

Можно принять основное состояние треугольной решетки при B=0 в качестве начального. Основное состояние треугольной решетки при B=0 сильно вырожденно, и его невозможно представить в явном виде [9]. С другой стороны, мы можем создать последовательность приближенных решений. Поскольку энтропия основного состояния была вычислена точно Ванье [9]

$$S = (2/\pi) \int_0^{\pi/3} \ln(2\cos(\omega)) d\omega \approx 0.323,$$

можно сравнивать плотность энтропии приближенных состояний с точным значением для контроля точности приближения.

В качестве первого приближения к основному состоянию АФМ модели Изинга на треугольной решетке примем сотовую структуру (Рис. 1). Две третьих полного числа цепочек упорядочены АФМ в сотовой структуре, а спины в центрах гексагонов имеют произвольную проекцию спина на ось с. Плотность энтропии в первом приближении равна $S_1 = (1/3) \ln 2 \approx 0.231$. Бесконечно малое магнитное поле снимает вырождение спинов в центрах гексагонов, ориентируя их вдоль оси с. Мы считаем, что спин-вверх цепочки (черные кружки) параллельны магнитному полю. Серые кружки на Рис. 1 становятся черными. Это приводит к скачку намагниченности амплитудой 1/3 от полной намагниченности. Затем 1/3 спинов остается в состоянии спин вниз, потому что они окружены 6-ью цепочками спин-вверх. Эта конфигурация стабильна до магнитного поля В=6Ј, где происходит скачок до насыщения.

Рис. 1. Сотовая магнитная структура. Спинвверх – черные кружки, спин-вниз – белые, серые могут быть ориентированы как спинвверх, так и спин-вниз.

Кривая намагниченности первого приближения показана на Рис. 2. Следует отметить, что она находится в прекрасном согласии с экспериментальными результатами при промежуточных температурах [1-3,5].

Мы можем улучшить приближение, включив в рассмотрение конфигурации типа трипод [9]. Эти состояния увеличивают плотность энтропии до $S_1 = (5/12) \ln 2 \approx 0.289$ [9] и включают различные типы конфигураций: изолированные триподы и связанные триподы.

Во втором приближении в расчетную схему вводятся изолированные триподы. Включая внешнее магнитное поле, мы опять получаем ступеньку при нулевом магнитном поле, но спины в центрах гексагонов, имеющих общие углы с центром трипода, остаются в состоянии спин-вниз, поскольку они окружены 4-мя спинами-вверх и 2-мя спинами-вниз. Спины цепочек в центрах гексагонов триподов переворачиваются в новом критическом поле B=2J, в котором кривая намагниченности достигает 1/3-плато и совпадает с первым приближением (Рис. 2).

третьем приближении включаются В изолированные пары триподов. Они не приводят особенностям к новым на кривой Изолированная намагниченности тройка триподов, соединенных звездой, принимается в рассмотрение в рамках четвертого приближения (Рис. 4). Ключевой особенностью этой конфигурации является то, что существуют спины, окруженные пятью спин-вверх и одним спин-вниз состояниями. Эти цепочечные спины остаются устойчивыми до В=4Ј, где возникает новая ступень намагниченности.

Кривая намагниченности в четвертом приближении воспроизводит все особенности экспериментальной кривой [1-5]. В отличие от наших результатов, в эксперименте третья ступенька значительно выше второй [2]. Это количественное расхождение может быть устранено в высших приближениях, которые могут быть получены аналитически, как в данной работе, или численно, применяя метод Монте-Карло [8].

Несколько вопросов, связанных с намагниченностью Са₃Со₂О₆, остаются открытыми. В сильных магнитных полях, выше последнего критического поля 6*J*, наблюдались

Рис. 2. Магнитный момент как функция магнитного поля. Пунктир – первое приближение, штрих-пунктир – второе, сплошная линия – четвертое приближение.

Рис. 3. (а) Конфигурация типа трипод, (б) три трипода, соединенные звездой.

размытые особенности. Они, по-видимому, связаны с малой долей CoII узлов, которые находятся в высокоспиновом состоянии. На себя обращает внимание также существенный гистерезис на экспериментальной кривой. Он сильно зависит от скорости нарастания поля. Следует отметить, что когда магнитное поле уменьшается и проходит значение *B*=6*J*, система оказывается в новом состоянии, отличающимся от состояния в нарастающем поле.

Автор признателен К.Демаже и М. Дрильону за плодотворные обсуждения и гостеприимство во время пребывания в IPCMS (Strasbourg, France). Работа частично поддержана ИНТАС (проект INTAS 03-51-4778).

- 1. V. Hardy, D.Flauhaut, M.R.Lees, O.A.Petrenko, Phys. Rev. B **70**, 214439 (2004)
- 2. A. Maignan, V. Hardy, S.Hebert et al., J. Mater. Chem. 14, 1231 (2004)
- 3. V. Hardy, M. R. Lees, O. A. Petrenko, D. Mc K. Paul, Phys. Rev. B **70**, 64424 (2004)
- 4. V. Hardy, S. Lambert, M. R. Lees, D. Mc K. Paul, Phys. Rev. B 68, 14424 (2003)
- 5. A. Maignan, C. Michel, A. C. Masset et al., Europ. Phys. Jour. B **15**, 657 (2000)
- 6. S. Nijtaka, K. Yoshimura, K. Kosuge et al., Phys. Rev. Lett. 87, 177202 (2001)
- 7. Yu. B. Kudasov, Phys. Rev. Lett. 96, 27212 (2006)
- 8. E. Kim, B. Kim, S. J. Lee, Phys. Rev. E 68, 66127 (2003)
- 9. G. H. Wannier, Phys. Rev. 79, 357 (1950)

Исследование критических явлений в моделях наноразмерных магнитных сверхрешеток

<u>Муртазаев А.К.</u>¹, Хизриев К.Ш.¹, Уздин В.М.²

Институт физики Дагестанского НЦ РАН, ул.М.Ярагского, 94, 367003, Махачкала, Россия

²МЦ ДПО СПбГУ, 14 линия В.О., 29, 199178, Санкт-Петербург, Россия

e-mail: <u>m_akai@iwt.ru</u>

Удобным объектом для изучения критического поведения и эффектов, связанных с размерностью системы, в многослойных являются сверхрешетки Fe/V с структурах чередующими слоями железа и ванадия. Минимальная толщина пленки Fe, при которой она остается магнитной, составляет два атомных слоя, причем температура Кюри зависит от толщины слоев ванадия и имеет минимум, когда система становится квазидвумерной. Экспериментальные измерения критических явлений в таких системах, требуют изготовления образцов с совершенной структурой И идеальными интерфейсами. Создание таких образцов и измерение их характеристик вблизи точки фазового перехода оказывается чрезвычайно трудной задачей. Поэтому большой интерес представляет численный эксперимент, позволяющий исследовать поведение "идеальной" системы вблизи действительно точки Кюри.

Для исследования критического поведения многослойных магнитных систем нами была использована простейшая модель, обобщающая стандартную ХҮ-модель. Магнитные атомы, расположены в узлах квадратной решетки на параллельных плоскостях, отстоящих на расстоянии одинаковом друг от друга. Взаимодействие между ближайшими соседями в плоскости носит ферромагнитный характер и внутрислойным параметром определяется обмена J_{\parallel} . Имеется также взаимодействие J_{\perp} между атомами, находящимися на соседних плоскостях (межслойное взаимодействие). Его величина и знак может изменяться в зависимости от расстояния между плоскостями. Поскольку в эксперименте расстояние между плоскостями обычно существенно больше межатомного расстояния, каждый атом чувствует усредненный момент соседних плоскостей. Нами рассмотрен предельный случай, когда каждый атом взаимодействует лишь с одним ближайшим атомом в каждой из соседних плоскостей.

Гамильтониан модели может быть представлен в виде

$$H = -\frac{1}{2} \sum_{i,j} J_{\parallel}(S_i^x S_j^x + S_i^y S_j^y) - \frac{1}{2} \sum_{i,k} J_{\perp}(S_i^x S_k^x + S_i^y S_k^y)$$

где первая сумма учитывает обменное взаимодействие каждого магнитного атома с ближайшими соседями внутри слоя, а вторая – с атомами соседних слоев через немагнитную прослойку; $S_{j}^{x,y}$ – операторы проекции спина локализованного на узле *j*.

Расчеты проводилось однокластерным алгоритмом метода Монте-Карло для систем с периодическими граничными условиями и линейными размерами LxLxL, где $L = 8\div40$ – число магнитных слоев Fe. В ходе численного эксперимента определялись намагниченность M, теплоемкость C, восприимчивость χ и параметр V_i , через который определялся критический индекса радиуса корреляции.

Для определения критической температуры был использован высокоэффективный метод кумулянтов Биндера. Согласно этому методу, все кумулянты определенные по формулам

$$U_{L} = 1 - \frac{\left\langle M^{4} \right\rangle_{L}}{3 \left\langle M^{2} \right\rangle_{L}^{2}}$$

для различных размеров L должны пересекаться в одной точке при $T = T_c$.

На рис. 1 представлена зависимость кумулянтов U_L при $J_\perp/J_\parallel = 0.4$. Стрелкой показана температура фазового перехода. Аналогичным образом были определены критические температуры для всех отношений обменов J_\perp/J_\parallel . Эта зависимость (фазовая диаграмма) изображена на рис. 2. Уменьшение межслойного обмена ведет к понижению температуры фазового перехода, что согласуется с данными лабораторных экспериментов. Для максимумов теплоемкости и восприимчивости

Рис.1. Определение точки фазового перехода для модели магнитной сверхрешетки.

Рис.2. Фазовая диаграмма модели магнитной сверхрешетки (FM – ферромагнитная, AF – антиферромагнитная, PM – парамагнитная области).

наблюдается такое же смещение в сторону низких температур с уменьшением соотношения J_{\perp}/J_{\parallel} , как и для температур фазового перехода.

Bce полученные температурные термодинамических зависимости величин свидетельствуют о наличии в модели сверхрешетки фазового перехода второго рода. Используя соотношения теории конечноразмерного скейлинга, нами для исследуемой модели рассчитаны основные статические критические индексы, такие как критические индексы теплоемкости α, восприимчивости γ, намагниченности *β*, радиуса корреляции *v*. В таблице 1 приведены значения всех критических параметров.

Для далеких от кроссоверной области соотношений обменов, значения значений критических индексов находятся в хорошем согласии с теоретическими результатами полученными для классических модельных систем. Например. значения критических индексов практически не отличаются от значений для ХҮ-модели при соотношении обменов равной 1. Уменьшения соотношения

обменов приводит к плавному изменению значений критических индексов. При этом не происходит нарушение выполнения скейлинговых соотношений между критическими индексами вплоть до самой малой соотношения $J_{\parallel}/J_{\parallel}$. величины Например. последний столбец таблицы 1 демонстрирует хорошее выполнение соотношения $\alpha + 2\beta + \gamma = 2$ вплоть до значения $J_{\perp} / J_{\parallel} = 0.01$, начиная с которого наблюдается отклонения в выполнении скейлинговых соотношений. Отметим, что нарушение скейлинговых соотношений наблюдалось в случае использование в гамильтониане трехкомпонентных спинов (модель Гейзенберга) уже при соотношении обменов 0.4 и меньше. С уменьшением отношения межслойного и внутрислойного обменов происходит переход к квазидвумерному критическому поведению.

Согласно теореме Мермина и Вагнера в двумерной ХҮ-системе с взаимодействием только между ближайшими соседями дальний магнитный отсутствует порядок. Отсутствие дальнего порядка в системе не означает монотонного изменения ee термодинамического состояния. Немонотонность может проявиться не в появлении дальнего изменении поведения порядка, а в корреляционной длины, что имеет место в ХҮмодели. В этой системе происходит фазовый переход Березинского-Костерлица-Таулеса (БКТ). Ниже температуры $T_{\rm BKT}$ ΜΟΓΥΤ образоваться связанные состояния – вихревые пары. Для исследования возможного фазового перехода типа БКТ необходимо провести отдельные исследования, которые выходят за рамки данного сообщения.

Авторы работы благодарны Б. Хйорварсону и Х. Цабелю за полезные обсуждения.

Работа выполнена при финансовой поддержке программы «Фонда содействия отечественной науке» (Муртазаев А.К., Хизриев К.Ш.) и проектов РФФИ (№ 04-02-16487, 04-02-16024).

J_{\perp} / J_{\parallel}	$k_{B}T_{C}/J_{\parallel}$	ν	α	β	γ	$\alpha + 2\beta + \gamma$
1.0	1.7463(3)	0.6706(3)	-0.0184(3)	0.3417(3)	1.3398(3)	2.0048
0.7	1.6197	0.6696	-0.0099	0.3392	1.3284	1.9969
0.4	1.4616	0.6689	-0.0068	0.3380	1.3289	1.9981
0.1	1.2219	0.6617	0.0187	0.3284	1.3231	1.9986
0.07	1.1832	0.6618	0.0288	0.3267	1.3243	2.0065
0.04	1.1346	0.6548	0.0635	0.3166	1.3172	2.0139
0.01	1.0559	0.6012	0.1621	0.2878	1.2298	1.9675

Таблица 1. Значения критических параметров для модели магнитной сверхрешетки Fe/V.
Проводимость и антиферромагнитизм допированных Sr эпитаксиальных тонких пленок CaCuO2

Г.А. Овсянников^{1,2}, В.Демидов¹, Ю.В. Кислинский¹, В. Комиссинский^{1,2}

¹Институт радиотехники и электроники РАН, ул. Моховая, 11, строение 7, Москва, Россия.

² Чалмерский технологический университет, Факультет микроэлектроники и нанонауки, Гетеборг, Швеция. e-mail:

gena@hitech.cplire.ru

Ранее было отмечено, что сверхпроводимость купратных сверхпроводников с высокой критической температурой непосредственно связана с наличием в данных материалах слоев CuO₂. Причем, величина критической температуры увеличивается с повышением числа слоев в ячейке[1]. В этой связи значительный интерес представляют материалы, в которых можно считать, что имеется бесконечное количество купратных слоев CuO_2 . Типичным материалов является представителем таких СаСиО₂, где плоскости СиО₂ разделены атомами из Са, которые частично замещаются Sr при допировании. Этот материал представляет собой гайзенберговский двумерный антиферромагнитик с сильным межслойным взаимодействием Cu2+.

Эпитаксиальные пленки Ca_xSr_{1-x}CuO₂ (CSCO) x=0÷0,5 напылялись на подложки при (110)NdGaO₃. Использовался метод лазерной абляшии при температуре подложки 700-750°С и давлении кислорода 0,3-0,6 мБар при базовом давлении в камере до напыления 10⁻⁶ мБар. Плотностью энергии на мишени составляла 1,2-1,5 Дж/см² значение при скорости повторения импульсов 3-10 Гц. Проводилось стехиометрической распыление мишени, изготовленной прессованием порошка соответствующего состава. Мишень вращалась напыления, чтобы обеспечить BO время равномерное распыление материала мишени. После напыление образец медленно охлаждался в камере сначала при рабочем давлении до температуры 550С, а потом при давлении 700 мБар со скоростью 10÷15С в минуту. В целом методика получения CSCO пленок аналогична получению сверхпроводящих пленок YBa₂Cu₃O_x (YBCO) [2]. Типичные толщины пленок были 100-200 нм. Измерялись кристаллографические параметры пленок с помощью рентгеновского анализа, морфология пленок изучалась с помошью микроскопа атомных сил. резистивные измерения проводились по четырехточечной схеме с использованием модуляции тока на частоте 1 кГш.

В данной работе представлены результаты экспериментальных исследований электрофизических и магнитных свойств тонких эпитаксиальных пленок CSCO для x=0,15, полученных лазерной абляцией.

Для высокомных образнов с уровнем допирования Sr x<0.15 температурные зависимости проводимости хорошо соответствуют модели трехмерной прыжковой проводимости с изменяемой длиной прыжка (рис.1). Для образцов, имеющих прыжковый характер проводимости, определяя ИЗ эксперимента характерную температуру Т₀=(2-60) 10^6 К и предположив N(E_f) = 10^{21} , получаем активационную энергия прыжка: E_{hop} = k_B T $(T_0/T)^{1/4}$ =(0.2-0.5) eV, которая при T=300К несколько меньше диэлектрической щели, определенной оптическими методами: E=1,5 eV [3]. В отличие от обычных изоляторов, имеющих активационный характер проводимости, в которых наличие диэлектрической щели обусловлено кристаллическим полем, в мотовских изоляторах щель образуется из-за сильных электронных корреляций. Мотовский изолятор имеет возрастаюшую с уменьшением температуры проводимость лаже при наполовину заполненной зоне проводимости. В нашем эксперименте отсутствует активационная зависимость сопротивления даже при $\rho > 10^4$ Ом см.

Дальнейшее уменьшение удельного сопротивления проходило увеличении при содержания Sr в пленках CSCO, которое вызывается повышением числа носителей CSCO за счет увеличения допирования в соответствие с фазовой диаграммой купратов. При высоком уровне допирования, когда ρ ≤ 0,01 Ом см, наблюдается смена механизма температурной зависимости проводимости от прыжковой на р ∞ Т^{-S} при S=1.6. Ранее такая зависимость наблюдалась в более низкоомных CSCO пленках. допированных Sr 30-40% [4]. Подобная температурная характерна для зависимость систем с неупорядоточенных электронных сопротивлением высоким при низких температурах. Однако при достаточно высоком уровне допирования (пленки CSCO с x=0.5) не

наблюдалась металлическая зависимость проводимости от температуры, типичная для

Рис.1. Температурная зависимость удельного сопротивления тонкой пленки CSCO с x=0.15.

сверхпроводящих пленок.

На рис. 1 представлена зависимость $\rho(T)$ для образца с x=0.15. Как было обнаружено в работе купраты могут иметь аномалии [5]. проводимости вблизи температуры Нееля Т_N, выраженные в виде изломов локальной энергии активации $E(T)_h = d(\ln(\rho(T))/d(1/T))$. Несмотря на $\rho(T)$ хорошее соответствие прыжковой зависимости мы не наблюдали особенностей в зависимости E(T)_h во всем изученном диапазоне 4.2-300K.

Для независимого определения T_N проводились исследование спектров ЭПР плёнок CSCO в температурном диапазоне 80 - 300 К. Спектры ЭПР снимались на стандартном спектрометре ER 200 фирмы Bruker (частота СВЧ 9.56 Ггц) с частотой модуляции магнитного поля 100 кГц. Концентрация парамагнитных центров определялась из сравнения площади линии поглощения ЭПР с сигналом от одной из линий сверхтонкой структуры Mn²⁺ эталонного образца MgO:Mn, который находился в том же резонаторе. Температура образцов изменялась с помощью приставки фирмы Oxford с криостатом ESR 900 путём прокачки через СВЧ резонатор паров жидкого азота.

Для пленок с x = 0.15 линия парамагнитного резонанса от меди (Cu²⁺, S = 1/2) наблюдалась в исследуемом температурном диапазоне вблизи g-фактора 2.8. Значительное уменьшение сигнала при понижении температуры (см. рис. 2) связано с переходом парамагнетик-антиферромагнетик, что позволило определить температуру антиферромагнитного перехода. При уменьшении температуры от 300 К до 130 К наблюдается небольшой рост поглощения.

который сменяется резким спадом, как и должно парамагнетикбыть при переходе антиферромагнетик. Температура T_N, определенная по результатам измерений двух образцов находится в диапазоне 90-120К. Величина T_N, которая значительно отличается от полученной по нейтронным исследованиям на порошках, а также значительный разброс по образцам скорее всего вызваны изменение содержания кислорода в пленке как в процессе измерений, так его отличием от содержания кислорода в порошке. По сигналу резонансного поглощения было оценено число парамагнитных центров, в данном случае – число спинов меди: $N_{Cu} \sim 4 \cdot 10^{15}$ спинов. Это число в близко к числа молекул Ca_{0.85}Sr_{0.15}CuO₂ в образце.

Рис.2. Температурные зависимости площади линии поглощения ЭПР для двух образцах CSCO с x=0.15

Работа выполнялась при частичной поддержке проектами отделения ОФН РАН и президиума РАН, РФФИ-04-02-16818а и 05-02-1672, грантами Президента России НШ-7812.2006.2 и МК-2654.2005/2

[1] T. Siegrist, S.M. Zahurak, D.W. Murphy, R.S. Roth. Nature, 334, 231 (1988).

[2] Ф.В. Комиссинский, Г.А. Овсянников, Ю.В. Кислинский, И.М. Котелянский, З.Г. Иванов. ЖЭТФ, 95, 1074 (2002)

[3]X.M. Xie, C. Hattere, V.Mairet, C.F. Beuran, C. Coussot, C.D. Cavellin, B.Eustache, P.Laffez, X.Z.Xu, M.Lagues. App. Phys. Lett. 67, 1671 (1995)

[4] Г.А. Овсянников, С.А. Денисюк, И.К. Бдикин. Физика твердого тела, 47, 417 (2005)

[5] О.Е. Парфенов, А.А. Никонов, Письма в ЖЭТФ, 80, 284 (2004)

Исследование магнитных слоистых наноструктур Fe/Si методом спектроскопии потерь энергии отраженных электронов.

<u>А.С. Паршин¹</u>, Г.А. Александрова¹, С.Н. Варнаков^{1,2}, С.А. Кущенков¹, С.Г. Овчинников²

¹Сибирский государственный аэрокосмический университет им. М.Ф. Решетнева, 660014, г. Красноярск, пр. им. газеты «Красноярский рабочий», 31, Россия ²Институт физики им. Л.В. Киренского СО РАН, 660049, г. Красноярск 36, Академгородок, Россия e-mail: <u>aparshin@sibsau.ru</u>

Ранее [1] нами проведены исследования слоистых наноструктур системы Fe/Si методами малоуглового рентгеновского рассеяния и магнитометрии. свилетельствующие 0 сушественном влиянии интерфейса на магнитные характеристики этой системы. В ланной работе представлены результаты систематического исследования границ раздела слоистых структур Fe/Si и Si/Fe методом спектроскопии потерь энергии отраженных электронов.

Для экспериментального изучения интерфейса системы Fe/Si сформированы слоистые структуры, состоящие из подложки Fe или Si, толщиной приблизительно 50 нм и тонкого верхнего слоя соответственно Si или Fe различной толщины в пределах от 0,5 до 3 нм. Образцы получены методом термического испарения на подложках монокристаллического кремния при комнатной температуре в сверхвысоковакуумном технологическом комплексе, оснащенном электронным спектрометром 09ИОС-03 [2]. Базовый вакуум в технологической камере составлял 10⁻⁷ Ра. Контроль температуры испарителей, управление заслонками в процессе формирования слоистых структур осуществлялись автоматизированным программно-аппаратным комплексом.

Спектры потерь энергии отраженных регистрировались электронов в дифференциальном режиме dN/dE при энергии первичных электронов 1000 эВ. На рис. 1 представлены экспериментальные спектры для Si, Fe двухслойных И структур Si(50 нм)/Fe(1 нм), Fe(50 нм)/Si(1 нм). Все спектры нормированы на амплитуду основного пика потерь. Качественно спектры потерь энергии чистых поверхностей Si и Fe соответствуют возбуждению одиночных и кратных плазмонов соответствующих объемных материалов, а также межзонному переходу М₂₃, характерному для Fe. Для обеих слоистых структур спектры существенно отличаются от спектров исходных материалов.

Для количественного анализа экспериментальные спектры были численно продифференцированы и сглажены. Зависимости –d²N/dE² для систем Si(50 нм)/Fe(d) и Fe(50 нм)/Si(d), где толщина верхнего слоя d варьируется от 0,5 до 3 нм, представлены на рис. 2 и 3 соответственно. Энергетическое положение пиков потерь энергии электронов определялось в этом случае по максимумам кривой –d²N/dE². Штриховые пинии ограничивают лиапазон энергии объемного плазмона силицидов железа. Эта энергия возрастает с 20,5 до 21,9 эВ в ряду FeSi₂→FeSi→Fe₃Si в связи с увеличением плотности валентных электронов [3,4].

Рис.1 Экспериментальные дифференциальные спектры исходных материалов и слоистых структур.

Рис.2 Спектры потерь энергии электронов слоистых структур Si(50 нм)/Fe(d).

Рис.3 Спектры потерь энергии электронов слоистых структур Fe(50 нм)/Si(d).

Из приведенных спектров видно, что только для структуры Fe(50 нм/Si(1 нм) основной пик потерь можно связать с возбуждением объемного плазмона в силициде.

Важной характеристикой энергетических потерь электронов в твердых телах, широко используемой последние В годы для количественного анализа в спектроскопии потерь энергии отраженных электронов, дифференциальное поперечное является сечение неупругого рассеяния $K(E_0, E_0 - E)$. Здесь Е₀ - начальная энергия электрона, Е₀ - Е энергетические потери. В работах [5,6] приведен алгоритм для определения из экспериментального спектра $j_1(E)$ произведения средней длины неупругого пробега электронов λ на дифференциальное сечение:

$$\lambda K(E_0, E_0 - E) = \frac{1}{c} [j_l(E) - \int_E^{E_0} \lambda K(E_0, E' - E) j_l(E') dE']$$

здесь с – площадь упругого пика.

Для вычисления произведения $\lambda K(E_0, E_0-E)$ использовали программный пакет мы QUASES™ XS REELS (Quantitative Analysis of Surfaces by Electron Spectroscopy cross sections determined by REELS) [7]. Для моделирования дифференциального сечения неупругого рассеяния электронов нами разработана программа согласно модели компьютерная Tougaard'a Yubero И [8]. Входными параметрами программы являются действительная и части мнимая диэлектрической функции соответствующего материала.

На рис. 4. приведены экспериментальные и расчетные зависимости $\lambda K(E_0, E_0 - E)$ для чистых Si и Fe. Полученные модельные кривые мы использовали для моделирования дифференциальных сечений слоистых структур в виде суперпозиции с соответствующими весовыми коэффициентами модельных

дифференциальных сечений исходных материалов. Результаты таких расчетов, приведенные на рис. 5, свидетельствуют об удовлетворительном согласии теоретических расчетов с экспериментом.

Рис.4 Экспериментальные и расчетные зависимости $\lambda K(E_0, E_0 - E)$ для исходных материалов.

Рис.5 Экспериментальные и расчетные зависимости $\lambda K(E_0, E_0 - E)$ для слоистых структур.

[1] Варнаков С.Н., Паршин А.С., Овчинников С.Г., Rafaja D., Kalvoda L., Балаев А.Д., Комогорцев С.В. Письма в ЖТФ, **31**, вып, 22, 1 (2005).

[2] Варнаков С.Н., Лепешев А.А., Овчинников С.Г., Паршин А.С., Коршунов М.М., Nevoral P. ПТЭ **6**, 252 (2004).

[3] Лифшиц В.Г., Луняков Ю.В. Спектры ХПЭЭ поверхностных фаз на кремнии. Владивосток: Дальнаука, 2004. 315 с.

[4] Egert B., Panzner G. Phys. Rev. B 29, 2091 (1984).

[5] Tougaard S., Chorkendorf I. Phys. Rev. B 35, 6570 (1987).

[6] Tougaard S. Surf. Interf. Anal. 11, 453 (1988).

[7] http:// www.quases.com.

[8] Yubero F., Tougaard. Phys. Rev. B 46, 2486 (1992).

Нанокристаллические твердые растворы Ni–Mn – новые материалы с конкурирующим обменным взаимодействием

Ю.А. Бабанов^{1,2}, В.П. Пилюгин¹, Т. Миянага³, А.М. Пацелов¹, Е.Г.Чернышев¹, <u>А.В. Ряжкин¹</u>, Т. Огасавара³

¹Институт физики металлов Уральского отделения российской академии наук, ул. С. Ковалевской 18 ГСП–170, 620219, Екатеринбург, Россия

²Удмурдский государственный университет, Ижевск, Россия

³Отдел наук и технологий, факультет наук, университет Хиросаки, 3–Бункио–чо, Хиросаки, Аомори

036-8561, Япония

e-mail: rav@imp.uran.ru

Для Ni–Mn сплавов магнитное состояние определяется конкуренцией ферромагнитного обменного взаимодействия пары Ni–Ni с антиферромагнитным взаимодействием пары Mn– Mn. Когда атомов Mn в ближайшем окружении атома Mn не более 2, такой сплав ферромагнитный. Когда в ближайшем окружении атома Mn находится более 4 атомов Mn, то сплав – антиферромагнитный. Когда атомов Mn вокруг атома Mn от 2 до 4, то при комнатной температуре сплав парамагнитный, а при низких температурах переходит в состояние спинового стекла (неколлинеарного магнетика).

В последние годы вновь возрос интерес к исследованиям сплавов с конкурирующим обменным взаимодействием. Было обнаружено, что в нанокристаллических сплавах с содержанием Mn 25–30 ат% наблюдается магниторезистивный эффект [1]. Величина эффекта зависит от размера зерна и от содержания Mn и достигает максимума при содержания Mn в сплавах 30 ат%. Однако, используя в качестве метода приготовления образцов закалку воду, приготовить образцы с большим содержанием марганца не представляется возможным.

В настоящем докладе дан обзор, опубликованных ранее работ, по методам приготовления неупорядоченных сплавов Ni-Mn и по результатам проведенных исследований локальной атомной структуры и магнитных свойств твердых растворов Ni₅₀Mn₅₀, Ni₇₅Mn₂₅, Ni₈₀Mn₂₀ [2,3].

Исследуемые образцы Ni-Mn твердых растворов по методам приготовления можно разделить на три группы: 1) образцы, приготовленные методом быстрой закалкой в воду (Ni₇₅Mn 25, Ni₈₀Mn₂₀) (приготовлены в университете г. Хиросаки, Япония); 2) сплав Ni₅₀Mn₅₀, полученный разупорядочением сдвигом под давлением из упорядоченного состояния; 3) образцы разупорядоченных сплавов Ni-Mn с содержанием Mn от 5 до 50 ат% приготовлены методом сдвига под давлением из исходных чистых порошков. Последние две серии образцов были получены в ИФМ УрО РАН. Масса образца, приготовляемого методом сдвигом под давлением составляет несколько десятком миллиграмм, поэтому нам не удалось использовать метод нейтронного рассеяния для анализа структурного состояния получаемых образцов.

Микроструктура образцов, приготовленных методом сдвига под давлением, исследовалась под электронным микроскопом. На основе этих исследований было получено, что твердые растворы – это наносплавы со средним размером зерна 20 – 40нм (рис.1).

40нм	б
------	---

Рис.1 Микроструктура разупорядоченых сплавов Ni₆₅Mn₃₅,полученного механосинтезом из элементных порошков (а), Ni₅₀Mn₅₀ полученный разупорядочением упорядоченного сплава (б) (светлое поле). Картины диффузного рассеяния рентгеновских лучей снимались на лабораторном диффрактометре ДРОН–3 в многопроходном режиме.

На рисунке 2 представлен набор картин рентгеновского рассеяния от образцов Ni–Mn твердых растворов. Как видно из рисунка, все рассматриваемые сплавы имеют решетку на основе ГЦК структуры Ni.

К-спектры поглощения Ni и Mn получены с использованием синхротронного излучения линии BL12C на Фотонной фабрике в Цукубе, Япония.

Постоянные решетки из EXAFS–спектров получались используя следующую методику: применяя метод расчета длины химической связи из EXAFS–спектров первые межатомные расстояния рассчитывались [4], учитывая, что для

Рис.2 Дифракционные картины рассеяния для чистого Ni, Mn и Ni–Mn твердых растворов.

всех исследуемых образцов реализуется элементарная ячейка на основе ГЦК структуры Ni, постоянные решетки были рассчитаны из первого межатомного расстояния.

На рисунке 3 представлены результаты, полученные для образцов, приготовленных ме-

тодом механосинтеза из исходных порошков (пунктирная линия с точками). Значения постоянных решетки сравниваются с данными, полученными для образцов, приготовленных методом закалки в воду и методом сдвига под давлением упорядоченного сплава Ni_{0.50}Mn_{0.50} (сплошная линия с треугольниками).

Рис. 3. Зависимость параметров решетки от концентрации Ni по данным EXAFS-анализа.

Впервые были получены образцы твердых растворов с содержанием Ni от 95 до 50 ат% методом сдвига под давлением из исходных чистых порошков. Методами рентгеновского рассеяния и поглощения были проведены структурные исследования. Структурные исследования показали, что во всех полученных твердых растворах образуется нанокристаллическое неупорядоченное состояние на основе ГЦК решетки никеля. Зависимость постоянной решетки от концентрации Ni носит немонотонный характер.

Авторы выражают благодарность Антоновой О.В. за электронно-микроскопические исследования.

Работа выполнялась при частичном финансировании по гранту НШ–5869.2006.2 и по программе президиума РАН П–09 (подпрограмма № 3).

[1] T.Okazaki, T.Miyanaga et al, – Rev. Adv. Mater. Sci.<u>6</u>, 150 (2004)

[2] Yu.A. Babanov, E.D. Crozier, R.A. Gordon, T. Miyanaga et al – Nucl. Instr.& Methods A, 2001, v. 470, pp. 367-37

[3] В.П.Пилюгин, Ю.А.Бабанов, Т.Миянага и др., – ФММ, 2004, v. 98, сс. 29-34

[4] Babanov Yu.A., Shvetzov V.R. - phys.

stat.sol.(b), 1985, v.131, pp.1–4

Контролируемая квантовая интерференция в мессбауэровской спектроскопии: «вентильный» эффект.

<u>Садыков Э.К.</u>¹, Аринин В.В.¹, Вагизов Ф.Г.^{1,2} ¹Казанский университет, 420008, Кремлевская ул.18, Казань, Россия

Казанский университет, 420008, Кремлевская ул. 18, Казань, Россия ²Техасский университет, Колледж Стейшн, Техас 77840, США

e-mail: esad@ksu.ru

В последние годы предпринимаются попытки реализовать эффекты квантовой интерференции (КИ) радиационных амплитут в гамма диапазоне [1], используя для этого мессбауэровские переходы. Речь идет об эффектах, полученных ранее в оптическом диапазоне [2], например таких, как электромагнитно индуцированная прозрачность среды, уменьшение групповой безинверсные скорости света, механизмы генерации излучения и т.д. Сравнительно недавно появилась идея КИ мессбауэровских фотонов [3], которая остается актуальной по сей день. В данной работе нами изучены последствия КИ в спектрах резонансного мессбауэровского рассеяния в условиях когерентной динамики спина возбужденного состояния ядра под действием радиочастотного (РЧ) поля.

Рассмотрим модельную трехуровневую систему (рис.1). Уровень 1 представляет основное состояние ядра, а 2 и 3 – спиновые подуровни возбужденного состояния. Точно в резонанс с переходом 2-3 настроено РЧ (управляющее) поле. Излучение мессбауэровского источника настроено (возможно, с расстройкой) на переход 1-2.

Рис.1. Модельная трехуровневая схема рассеяния мессбауэровских гамма квантов.

Гамильтониан такой системы выглядит следующим образом:

$$\hat{H} = \hat{H}_{0} + \hat{H}_{r.f.}^{0} + \hat{H}_{\gamma}^{0} + \hat{H}_{r.f.} + \hat{H}_{\gamma}(k) \quad (1)$$

здесь \hat{H}_0 представляет ядерное и сверхтонкое взаимодействия, $\hat{H}^0_{r.f.}$ и \hat{H}^0_{γ} - свободные РЧ- и

гамма- поля, $\hat{H}_{r.f.}$ и $\hat{H}_{\gamma}(k)$ - взаимодействия ядра с РЧ полем и с мессбауэровским излучением.

$$\hat{H}_{0} = \sum_{i=1,2,3} \varepsilon_{i} a_{i}^{\dagger} a_{i}, \varepsilon_{1} = 0; \quad \hat{H}_{r.f.}^{0} = \omega_{0} \hat{b}^{\dagger} \hat{b};$$

$$\hat{H}_{\gamma}^{0} = \sum_{k} \omega_{k} \hat{c}_{k}^{\dagger} \hat{c}_{k}, \qquad (1)$$

$$\hat{H}_{r.f.} = \Omega_0 \hat{b} \hat{a}_3^* \hat{a}_2 + \Omega_0^* \hat{b}^* \hat{a}_2^* \hat{a}_3, \qquad (2)$$

$$\hat{H}_{\gamma}(k) = A_k \hat{c}_k \hat{a}_2^* \hat{a}_1 + A_k^* \hat{c}_k^* \hat{a}_1^* \hat{a}_2, \quad \omega_k = c_0 k \quad (3)$$

здесь \hat{a}_i^+ , \hat{a}_i и ε_i^- Ферми операторы рождения и уничтожения и энергия i-го состояния H₀ (рис.1), \hat{b}^+ , \hat{b} и \hat{c}_k^+ , \hat{c}_k^- - Бозе операторы рождения, уничтожения РЧ фотона и гамма фотона, соответственно, A_k^- и Ω_0^- -константы взаимодействия гамма- и РЧ- фотонов с ядром.

Для описания рассеяния гамма фотона используем амплитуду рассеяния в представлении «одетых» состояний во втором порядке теории возмущений по взаимодействию $H_{\gamma}(k)$. Использованием «одетых» состояний e_q^n достигается точный учет влияния РЧ поля.

$$\begin{aligned} A_{i,f} &\sim \sum_{q} \int_{0}^{\infty} dt \exp\left(-\Gamma t/2\right) \left\langle f(t) \middle| \hat{H}_{\gamma}\left(\vec{k}_{2}\right) \middle| e_{q}^{n}(t) \right\rangle \\ &\left\langle e_{q}^{n}\left(0\right) \middle| \hat{H}_{\gamma}\left(\vec{k}_{1}\right) \middle| i(0) \right\rangle \end{aligned} \tag{5}$$

здесь Γ - естественная ширина мессбауэровского уровня, $|i(0)\rangle = |i(t=0)\rangle = |1\rangle |n\rangle |k_1\rangle$ и $|f(t)\rangle = \exp(-iE_f t) |1\rangle |n'\rangle |k_2\rangle$ - начальное и конечное состояния системы, полная энергия которых $E_i = \varepsilon_1 + n\omega_0 + E_{k1}$ и $E_f = \varepsilon_1 + n'\omega_0 + E_{k2}$, k_1 и k_2 волновые вектора падающего и рассеянного гамма квантов.

Вероятность рассеяния мессбауэровского излучения вычисляется по следующей формуле:

$$S_{i,f} \sim \int dE_{k_1} |A_{i,f}|^2 \,\delta(E_f - E_i) f_L(E_{k_1} - E_{k_0}).$$
 (6)
В выражении (6) учтен закон сохранения энергии
системы и проводится усреднение по энергии
падающего гамма кванта E_{k_1} с учетом функции

формы линии (как правило, лоренцевой) источника

 $f_L(E_{k1} - E_{k0})$, где E_{k0} – энергия, соответствующая максимуму этой функции.

Подставляя амплитуды (5) в выражение (6) и выполнив интегрирование по энергии первичного фотона, получим спектральные формы упругого и рамановского рассеяния при ($E_{k0} = \varepsilon_2$) [4].

$$S_{1}(k_{2}) \sim \left| \frac{1}{ip - \Omega_{r}} + \frac{1}{ip + \Omega_{r}} \right|^{2} f_{L}(E_{k2} - \varepsilon_{2}), (7)$$

$$\left| \langle 1 | \hat{H}(k_{2}) | 2 \rangle \langle 2 | \hat{H}(k_{1}) | 1 \rangle \right|^{2}$$

$$S_{2}(k_{2}) \sim \left| \frac{1}{ip - \Omega_{r} - \omega_{0}} - \frac{1}{ip + \Omega_{r} - \omega_{0}} \right|^{2}, (8)$$

$$f_{L}(E_{k2} - \varepsilon_{2} - \omega_{0}) \left| \langle 1 | \hat{H}(k_{2}) | 3 \rangle \langle 2 | \hat{H}(k_{1}) | 1 \rangle \right|^{2}$$

 $p=-i(E_{_{k2}}-arepsilon_{_2})+rac{\Gamma}{2}$, $\Omega_{_r}=ig|\Omega_{_0}ig|\sqrt{\overline{n}}$ - частота Раби

РЧ поля. Коэффициент пропорциональности в выражениях (7) и (8) один и тот же при РЧ резонансе $\omega_0 = \varepsilon_3 - \varepsilon_2$.

Легко заметить, что в выражениях (7) и (8) имеет место конструктивная и деструктивная интерференции, соответственно, пока $\Omega_{\rm r}$ мало. В частности, при $\Omega_{\rm r}$, стремящемся к нулю, S₂ стремится к нулю. Однако с ростом $\Omega_{\rm r}$ (а именно, при $\Omega_{\rm r} > \Gamma/2$) характер интерференции в (7) и (8) при тех же условиях ($E_{k0} = \varepsilon_2$) меняется на обратный. Теперь при достаточно больших значениях $\Omega_{\rm r}$ интенсивность рамановской линии может оказаться больше, чем интенсивность линии упругого рассеяния.

Рис.2 Ожидаемый спектр.

На рис.2 представлен ожидаемый спектр резонансного рассеяния мессбауэровского излучения при Ω_r =1,5 (предполагается, что матричные элементы переходов 1-2 и 1-3 равны). Соотношение интенсивностей линий S₂ и S₁ определяется как I₂/I₁, где I₂ и I₁ - площади под линиями S₂ и S₁. Зависимость I₂/I₁ от амплитуды управляющего поля представлена на рис.3. То, что значение I₂/I₁ превышает единицу, означает, что ядро, поглотившее первичный гамма фотон на переходе 1-2, предпочитает высвечиваться с

уровня 3, т.е. по рамановскому, а не по упругому каналу. Такое предпочтение в высвечивании ядра было названо нами «вентильным» эффектом (из интуитивных соображений отношение I₂/I₁ должно было бы асимптотически стремиться к единице с ростом амплитуды управляющего поля). Данное явление объясняется тем, что при достаточно сильном управляющем полем интенсивность упругого рассеяния уменьшается в результате деструктивной интерференции амплитуд, а рамановского - увеличивается в результате конструктивной интерференции.

Рис.3 Зависимость отношения I_2/I_1 от частоты Раби $\Omega_r.$

Как видно из рис.3, величина «вентильного» эффекта монотонно зависит от частоты Раби управляющего поля Ω_г. Кроме того эффект зависит также от соотношения ширины линии источника Гист к ширине линии поглотителя Г. Последний фактор может быть реализован в экспериментах по наблюдению «вентильного» эффекта в оптических системах. Отметим, что с ростом Ω_r быстро уменьшается суммарная интенсивность рассеяния (I₁+I₂). Это является следствием расстройки резонанса из-за расщепления Раби, а не результатом КИ. Таким образом, оптимальное эффекта условие наблюдения сводится к соотношению Ω_г~Γ. Это есть условие возбуждения одним фотоном двух одетых состояний. согласованных по фазе, интерференция которых лежит в основе обсуждаемого явления.

Работа поддержана Грантами РФФИ 02-04-16939; CRDF CGP # RP1-2560-KA-03.

[1] O. Kocharovskaya, R. Kolesov, Yu. Rostovtsev, Phys. Rev. Lett., **82**, 3593 (1999); E.K. Sadykov, L.L. Zakirov, A.A. Yurichuk, Laser Physics **11**, 409 (2001); R. Coussement, Y. Rostovtsev, J. Odeurs at al, Phys. Rev. Lett. **89**, 107601-1 (2002).

[2] М.О. Скалли, М.С. Зубаири, Квантовая оптика. Москва. Физматлит. (2003).

[3] R. Coussement, M. Van den Bergh, G. S'heeren at al, Phys. Rev. Lett. **71**, 1824 (1993).

[4] Э.К. Садыков, В.В. Аринин, Ф.Г. Вагизов, Письма в ЖЭТФ, **82**, 484 (2005).

Исследование наноразмерных частиц железа в матрице полиэтилена высокого давления (ПЭВД) методом Мессбауэровской спектроскопии

<u>В.Г.Семенов¹</u>, В.С.Володин¹, В.В.Панчук¹, В.В.Матвеев¹, Eamonn Delvin², Г.Ю.Юрков³, Д.А.Баранов³, И.П.Доценко³

¹ Санкт-Петербургский государственный университ; ² NCSR "Demokritos", Greece; ³ ИОНХ им. Курнакова РАН

Ввеление

В последние годы все больший интерес вызывают исследования, посвященные методам получения наноразмерных материалов и изучению их свойств. Благодаря их специфическим особенностям, таким как: существенный вклад свойств поверхности, напряжения, высокие внутренние особые магнитные характеристики, возникающие благодаря однодоменности структуры, размерный фактор, определяющий высокий уровень избыточной свободной энергии, высокие каталитические свойства, наночастицы находят все большее число потенциальных в металлургии, электронике, применений биологической, химической И фармацевтической промышленности.

Основными, определяющими свойства, характеристиками частиц являются химический состав, размер, форма и состояние поверхности, факторы, сильно зависящие от технологии их получения.

Целью ланной работы является исследование с помощью Мессбауэровской спектроскопии состояний атомов железа в наноразмерных частицах железа (d~5нм) помещенных в матрицу ПЭВД. К сожалению, ультрамалые размеры частиц, не позволяют использовать метод рентгенофазового анализа. Мессбауэровская спектроскопия в данном случае является наиболее эффективным методом исследования физико-химических свойств атомов железа в таких частицах.

Экспериментальная часть.

Исследуемый в данной работе образец представлял собой наноразмерные частицы железа (d=5нм) упакованные в матрице полиэтилена (обр. #337). Содержание железа составило 25 wt%. В первом приближении частицы считались сферическими. Мессбауэровские спектры были измерены на двух установках: в НИИ химии СПбГУ (при 298К) и в Institute of material research of NRSC "Demokritos", Greece (при 77К). Спектры снимались в геометрии на «пропускание». Источник излучения представлял собой Co57 в матрице хрома. В качестве калибровки использовалась железная фольга, и все определенные химические сдвиги приведены относительно нее.

На рис. 1 приведены обработанные спектры исследуемого образца при температурах 298 и 77К. Параметры сверхтонких структур и относительное содержание состояний железа приведены в табл.1.

Рис. 1. Мессбауэровские спектры образца #337 (Fe в ПЭВД) при 298К и 77К. (Точки эксперимент).

При 298К (рис. 1-а) спектр состоит из подспектров, соответствующих атомам железа в магнитноупорядоченном (секстеты) и магнитнонеупорядоченном (дублет) состояниях. Кроме того, в спектре присутствует составляющая, которую мы описываем как синглет. уширенный Параметры сильно секстетов свидетельствуют о наличии в образце α-Fe металлического с полем 33T и нестехиометрического магнетита (Fe₃O₄) с заниженными на ~ 2Т полями 43,1 и 47,4Т [1]. Параметры дублета свидетельствуют о наличие в наночастицах двухвалентного железа и по уширенным линиям можно сделать заключение о неоднородном распределении окружения ядер железа. Интерпретировать, в каком состоянии находятся атомы железа, соответствующие аномально уширенному синглету («гало») в затруднительно. спектре, Эта область представляет собой переходное состояние железа между магнитноупорядоченными и немагнитными состояниями.

Из спектра видно, что частицы содержат неокисленное α-Fe ~25% и окисленные состояния железа ~75% и можно утверждать, что частицы состоят из «сердцевины» (α-Fe) и окисной «оболочки». Это утверждение следует из того, что атомы кислорода не смогли полностью проникнуть в частицы в связи с образованной на поверхности окисленной оболочки и полиэтилена.

Температура	Гипотезы	IS(mm/s)	QS(mm/s)	Heff(T)	%
298K	Синглет	0.40+/-0.06	-	-	42,7
	Дублет	0.34+/-0.02	0.94+/-0.03	-	10,5
	Секстеты	0.25+/-0.03	-0.01+/-0.06	47.39+/-0.17	3,3
		0.53+/-0.03	0.01+/-0.06	43.15+/-0.33	19,3
		0.00+/-0.01	0.00+/-0.01	33.09+/-0.02	24,2
77K	Дублет	0.3+/-0.6	1.3+/-0,2	-	1,5
	Секстеты	0.38+/-0.17	0.0+/-0.3	52.00+/-2.00	7,1
		0.34+/-0.14	0.0+/-0.2	50.00+/-3.00	16,8
		0.52+/-0.34	0.0+/-0.5	46.0+/-3.00	49.3
		0.00+/-0.05	0.0+/-0.10	34.63+/-0.35	25,3

Табл.1 Параметры сверхтонких структур спектров обр.#337 при 298К и 77К.

Мессбауэровский спектр обр. #337, измеренного при 77К (рис. 1-б), представляет собой суперпозицию магнитнорасщепленной и магнитнонерасщепленной составляющих (их доли - 88,5 % и 1,5% соответственно). По параметрам сверхтонких взаимодействий, было определено, что доля α-Fe практически не изменилась, доля нестехиометрического Fe₃O₄ (46T) составила ~50% и подспектры, с полями 50-54T. соответствуют гидроксидам α- и δ- FeOOH [1,2,3]. Доля атомов двухвалентного железа сократилась до ~ 2%. Функция распределения магнитных полей окисленного железа представлена на рис.2.

Рис.2. Распределение магнитных полей оксидных форм железа обр. 337 при 77К.

С помощью понижения температуры удалось расщепить «гало» (полученное в спектре при комнатной температуре), а также часть дублетной составляющей. При этом оказалось, что часть окисленных состояний железа находится в δнестехиометрической αи FeOOH модификации. Можно сделать вывод, что температура перехода в магнитноупорядоченное состояние оксидной фазы железа находится в диапазоне между 77К и 298К.

Полученные из обработки мессбауэровских спектров данные позволили произвести оценку радиусов «сердцевины» (α-Fe) частиц и окисленной оболочки, исходя из предположения, что исследуемые частицы считались

сферическими (Рис.3). Результаты представлены в Таблице 2.

Рис.3 Сферическая модель ультрамалых частиц.

Табл. 2. Рассчитанные радиусы α-Fe и охFe по формулам 3 и 4

R sum,	R α-Fe,	R oxFe,
nm,+/-5%	nm,+/-5%	nm,+/-5%
2,5	1,45	1,05

1. O'Grady W.E., Mossbauer Study of the Passive Oxide Film on Iron, J. Electrochem. Soc., 127 (1980) 555-563.

2. Murad E., Mossbauer Spectroscopy Applied to Inorganic Chemistry: Iron Oxides and Oxyhydroxides, Ed. J. Long Gary, N.Y.:Plenum Press, 2 (1984).

3. Takada T., Kiyama M., Bando Y., Nakamura T., Shiga M., Shinjo T., Yamamoto N., Endoh Y., Takami H., Mossbauer Study of α -, β - and γ -FeOOH, J. Phys. Soc. Japan, 19 (1964) 1744.

Работа выполнена при финансовой поддержке РФФИ, гранты 03-02-17168, 04-03-32090, 05-03-32083, 05-03-32902, Грант Президента РФ МК-2733.2005.3. VVM acknowledge a support of the Saint-Petersburg University and University of Athens exchange visit program.

Структурные дефекты и пространственно-неоднородные состояния в магнитных наносистемах

В.М.Уздин

Санкт-Петербургскогий государственный Университет, 10 линия В.О., д. 49, 199178, Санкт-Петербург, Россия. e-mail: uzdin @ vu1864.spb.edu

Исследование искусственных слоистых наноструктур, состоящих из различных химических элементов, открыло область физики, объединяющую фундаментальную науку с новейшими технологиями и промышленными приложениями. При создании приборов и устройств на основе многослойных систем особую роль приобретает информация о структурных дефектах и качестве интерфейсов, поскольку они в значительной степени определяет магнитные и транспортные свойства. Согласно Хейнрихсу [1] билинейное обменное взаимодействие в многослойных системах Fe/Cr может быть увеличено в 5 раз путем изменения температуры подложки во время напыления первого слоя. Поэтому управление шероховатостью интерфейсов и изучение связи структуры и свойств наносистем является проблемой большой важности. Однако, контроль качества интерфейса и восстановление его структуры на атомном масштабе по данным эксперимента представляет собой сложную неоднозначную задачу. Часто интерпретация одних и тех же экспериментальных данных, основывающаяся на различных моделях, приводит к качественно разным выводам о шероховатости интерфейса. В связи с этим особое значение приобретает использование единого теоретического подхода, позволяющего моделировать локальные структурные дефекты, для интерпретации различных экспериментальных методик.

В работе предложен микроскопический подход к описанию неидеальных интерфейсов, включающий моделирование эпитаксиального роста и самосогласованные расчеты магнитных моментов на каждом узле решетки в рамках метода модельных гамильтонианов. Параметры гамильтонианов определяются из сравнения с данными расчетов из первых принципов, выполненных для ряда идеальных систем. Предложен механизм перемешивания в процессе роста образца, предполагающий обмен вновь поступающих атомов с атомами поверхности. Параметр ζ, определяющий перемешивание, представляет собой долю обменивающихся атомов при напылении одного монослоя. Показано, что имеющее в этом случае место всплывание атомов в направлении эпитаксиального роста образца приводит к формированию асимметричного химического и магнитного интерфейсов в слоистых системах. В многослойных системах M_1/M_2 $(M_{1,2} = Fe, Cr, V, Sn, Ag)$ эта асимметрия позволяет понять различие магнитного поведения интерфейсов М₁ на М₂ и М₂ на М₁, наблюдаемые методами мессбауэровской спектроскопии [2,3]. На основе расчетов сверхрешеток Fe/Cr с перемешиванием на интерфейсе был объяснен сдвиг фазы коротковолновых осцилляций межслойного обменного взаимодействия, остававшийся не понятым более 10 лет [1,2]. В *in situ* экспериментах по измерению магнитного дихроизма для трехслойных систем Fe/V/Fe [4] нашло объяснение двукратное увеличение индуцированного на атомах ванадия момента при повышении температуры подложки в процессе эпитаксии от 300 К до 600 К [3]. Таким образом, можно утверждать, что предложенный механизм перемешивания при эпитаксиальном росте носит общий характер и применим к широкому классу металлических наносистем.

Асимметрия химического состава вблизи интерфейсов приводит к их магнитной асимметрии. На рис. 1 приведены профили концентрации Fe и намагниченности для сверхрешетки Fe_{21}/V_{14}

Рис. 1 Профиль концентрации Fe (*a*) и намагниченности (δ) для сверхрешетки Fe₂₁/V₁₄ с перемешиванием, определяемым параметром ζ ,=0,5. Стрелкой показано направление эпитаксиального роста.

Отметим, что несмотря на индуцированный на атомах V магнитный момент, направленный против намагниченности атомов железа, отрицательная магнитная поляризация на рис. 1 δ имеет место лишь на интерфейсе Fe на V, а вблизи интерфейса V на Fe намагниченность даже несколько превышает намагниченность массивного железа.

При расчетах пространственно-неоднородных магнитных структур типичным является существование множества самосогласованных решений с близкими энергиями. Для выделения решений с заданными свойствами предложен метод, основанный на проведении самосогласованных расчетов системы во внешнем локальном магнитном поле в рамках метода модельного гамильтониана Андерсона. Если поле имеет достаточно большой амплитуду и заданную пространственную конфигурацию, то профиль намагниченности повторяет эту конфигурацию. Постепенное изменение поля дает петлю гистерезиса, характеризующую устойчивость решения. В некоторых случаях и при выключении внешнего поля решение сохраняет его начальную пространственную структуру. Такой подход был использован для описания решений типа несоизмеримой волны спиновой плотности (ВСП) в массивном хроме и в многослойных наносистемах на его основе [5]. Магнитное поле на узле і вдоль направления (100) задавалось в виде

$$h_i = (-1)^{i+1} h^* \sin \frac{2\pi}{\Lambda} (i-1) , i=1, 2...\Lambda$$

Хотя вычисленная энергия ВСП, в согласии с данными расчетов из первых принципов [6], оказывается выше энергии чисто антиферромагнитного (АФ) состояния, обе энергии оказываются близки друг к другу, если длина ВСП А превосходит несколько десятков постоянных решетки. Поэтому уже термических флуктуаций в несколько градусов достаточно, чтобы сформировать отдельный узел ВСП. Узлы ВСП можно рассматривать как элементарные возбуждения на фоне АФ структуры.

Рис. 2 Магнитный момент на атоме, соответствующем узлу приложенного магнитного поля как функция амплитуды поля h^* (в условных единицах). Стрелками показано направление изменения h^* .

На рис. 2 представлена зависимость величины магнитного момента на атоме хрома, находящемся в узле приложенного внешнего поля от амплитуды поля h^* для Λ =64. После того, как система перешла в ВСП состояние, она не возвращается обратно ни при каком изменении h*. Оказалось, что для достаточно больших длин волн (Л>50) пороговое значение амплитуды поля для перехода из ВСП в АФ состояние выше, чем для сдвига узла ВСП на один атом в направлении (100). При изменении знака приложенного поля узлы ВСП сдвигаются, но не исчезают. Таким образом, узлы ВСП представляют собой квазичастицы, которые почти не взаимодействуют на больших расстояниях, но сильно отталкиваются и даже способны аннигилировать, когда расстояние между ними сокращается до 25 монослоев. С этой точки зрения они подобны одномерному газу слабо заряженных мыльных пузырей. При этом магнитные примеси, помещенные в хром, играют роль иголок, прокалывающих пузыри и уничтожающих их. Поэтому уже концентрации примесей в 1-2% достаточно, чтобы система перешла в АФ состояние. Отметим, что в системе со взаимодействием только между ближайшими соседями появляется новый характерный масштаб, значительно превышающий межатомное расстояние. Этот пространственный масштаб отвечает расстоянию, на котором затухает возмущение равновесного магнитного момента в массивном образце хрома при введении немагнитного атома. По порядку величины он соответствует наблюдаемой длине ВСП.

Концентрация узлов определяет длину волны ВСП. Если один узел приходится на 25 монослоев, то новые узлы не могут формироваться за счет температурных флуктуаций, поскольку это требует существенно большей энергии и может даже привести к аннигиляции уже существующих узлов. Очевидно, равновесная концентрация узлов является функцией температуры. Это определяет температурную зависимость длины ВСП.

Отметим, что в отличие от стандартной теории ВСП, в предложенном подходе не предполагается специальных свойств конгруэнтности частей поверхности Ферми.

Работа выполнена при поддержке РФФИ (грант 04-02-16024)

- 1. B. Heinrich, J.F. Cochran, T. Monchesky, and R. Urban, Phys. Rev. B **59** 14520 (1999)
- V.M. Uzdin, C. Demangeat, Phys. Rev. B 66, 92408 (2002)
- V.M. Uzdin, L. Häggström, Phys. Rev. B 72, 024407 (2005)
- A. Scherz, P. Poulopoulos, R. Nünthel, J. Lindner, H.Wende, F. Wilhelm, and K. Baberschke, Phys. Rev. B 68, 140401 (R) (2003)
- 5. V.M. Uzdin, C. Demangeat, J. Phys. : Condens. Matter., в печати.
- R. Hafner, D. Spišák, R. Lorenz, J. Hafner, Phys. Rev. B 65, 184432 (2002)

Развитие нанотехнологии и методов исследования магнитных и электронно-транспортных свойств планарных наноструктур из ферромагнитных металлов

Маликов И. В., Винниченко В. Ю., <u>Фомин Л. А</u>., Калач К. М., Михайлов Г. М.

Институт проблем технологии микроэлектроники и особо чистых материалов РАН, Черноголовка, Россия

В предыдущих работах [1,2] были опубликованы данные об эффекте гигантского изгибного магнитосопротивления (ГИМР) в планарных наноструктурах, изготовленных на основе пленок никеля. Предполагается, что данный эффект обусловлен режимом баллистического электронного транспорта, имеющего место в данных структурах, и особым типом доменного строения изготавливаемых наноструктур. Для улучшения качества наноструктур, в которых этот эффект наблюдается, были проведены исследования зависимости морфологии и электронно-транспортных свойств получаемых пленок от условий роста. Исследуемые пленки выращивались методом импульсного лазерного испарения в сверхвысоком вакууме на подложках монокристаллического сапфира (Aплоскость (1120)). В экспериментах контролировалось отношение сопротивлений при комнатной температуре и при температуре жидкого гелия (RRR), которое пропорционально остаточной длине свободного пробега электронов (ДСПЭ), а также измерялся магниторезистивный эффект. Морфология поверхности пленок исследовалась методом сканирующей зондовой микроскопии (СЗМ).

Измеренная зависимость параметра RRR от температуры роста пленок резко возрастает от 16, при 100°С, до ~50 при 270°С, где наблюдается максимум зависимости. Затем значение RRR стабилизируется в диапазоне температур от 300 до 500°С и составляет около 40. Последовательность ACM сканов поверхности никелевых пленок с толщинами 170 нм, выращенных при различных температурах подложки, показана на рис.1.

Рис. 1. Последовательность ACM сканов (1,2 *1,2 мкм) поверхности никелевых пленок, толщиной 170 нм, выращенных при температурах подложки (а) 100 °C, (b) 140 °C,(c) 300 °C, (d) 370 C, (e) 480 °C и (f) 610

При малых температурах (100-150°С) на поверхности пленки наблюдается множество выступов и неровностей с поперечным размером около 100 нм. Этот размер можно интерпретировать как средний размер кристаллитов, составляющих пленку. С ростом температуры подложки размер кристаллитов постепенно увеличивается, и у пленки, выращенной при 300°С можно заметить их шестиугольную огранку, что указывает на рост ГЦК пленки никеля вдоль направления [111]. При температурах роста около 400°С поверхность пленки приобретает гладкий вид, однако наблюдается появление редких сквозных отверстий. Зависимость RRR от толщины для пленок, выращенных при 270°С в диапазоне толщин 20 - 120 нм почти линейная. Это указывает на то, что ДСПЭ определяется главным образом рассеянием электронов на поверхности пленки и превосходит толщину пленок. Далее в размерной зависимости происходит загиб кривой с тенденцией выхода на насыщение, и доминирующим становится вклад рассеяния электронов проводимости на дефектах в объеме пленки. Характерная величина ДСПЭ рассеяния в объеме составляет ~1000 нм. Последовательность АСМ – сканов пленок никеля, выращенных при температуре подложки 270 °С разной толщины показана на рис.2.

Рис. 2. АСМ – сканы $(1,2^{*}1,2 \text{ мкм})$ поверхности пленок никеля, выращенных при температуре 270 °С толщиной: а) 12 нм, b) 30 нм, c) 50 нм, d) 90 нм, e) 120 нм, f) 140 нм

C3M измерения при разных толщинах пленки позволяют сделать вывод, что механизм роста сложный и состоит из разных стадий. Для пленок, выращенных при температуре 270°С маг-

ниторезистивный эффект увеличивается с увеличением толщины, а поле переключения (коэрцитивное поле) уменьшается.

Рис. 3. Кривые магнитосопротивления при комнатной температуре никелевого макромостика, полученные с помощью развертки магнитного поля (ось х) на магнитосиловом микроскопе с дополнительной измерительной приставкой: а) продольное магнитосопротивление; b) поперечное магнитосопротивление.

С целью визуализации изменения доменной структуры наноструктур во внешнем магнитном поле и одновременного измерения электрического сопротивления этих наноструктур к магнитосиловому микроскопу (МСМ) с внешним магнитным полем [1] было добавлено управление внешним электромагнитом непосредственно от управляющей программы МСМ и электрическая цепь для измерения сопротивления образца. Электрический сигнал, пропорциональный сопротивлению образца поступал в программу управления МСМ. Это позволило измерять кривые магнитосопротивления для образцов, помещенных в МСМ (рис.3) и, не изменяя положение образца в МСМ, наблюдать магнитный контраст.

Для наблюдения ГИМР эффекта размеры наноструктуры должны составлять 0,2 – 0,4 мкм. Для наноструктур из никеля таких размеров визуализация магнитного контраста методом MCM затруднительна. Методика визуализации магнитного контраста была апробирована на тестовых наноструктурах, в том числе, и для корректной интерпретации магнитного контраста [2].

Тестовые структуры были изготовлены в виде полосок шириной 0,2 мкм различной длины из пленок никеля, покрытого 5 нм слоем железа. На таких структурах удалось наблюдать магнитный контраст с помощью кантилеверов с магнитными покрытиями как SmCo, так и Fe или Co. На рис. 4 показана топография и магнитный контраст одной из таких полосок, полученные с помощью магниточувствительного Feкантиливера. Видно, что полоска разбита на несколько магнитных доменов разной полярно-

Рис. 4 Топография (а) и магнитный контраст (b) полоски из никеля, покрытой тонким слоем железа, измеренные с помощью кантилевера с железным покрытием.

сти. На концах наноструктуры магнитный контраст сильнее, чем в ее пределах [1]. Было обнаружено, что при малой чувствительности магнитного кантилевера тонкая магнитная структура не детектируется в отличие от более контрастных концов наноструктуры. Подбор достаточно чувствительного кантилевера, затруднен тем, что кантилевер не должен перемагничивать полоску и сохранять свои магнитные свойства во внешнем магнитном поле. В то же время он должен быть достаточно чувствительным и, следовательно, его магнитный момент должен быть относительно большим. Экспериментально было найдено, что кантилеверы с покрытием SmCo и Co, обладающие очень большой чувствительностью не позволяют видеть тонкой магнитной структуры на магнитомягких тестовых образцах. В то же время такие же кантилеверы с уменьшенной чувствительностью, а также магниточувствительные кантилеверы с железным покрытием проявляют тонкую магнитную структуру с визуализацией магнитных доменов. Полученные результаты указывают на немонотонную зависимость визуализации тонкой структуры магнитного контраста от чувствительности магнитных зондов, используемых в MCM.

[1]. I.V. Malikov, L.A. Fomin, V. Yu Vinnichenko and G.M. Mikhailov, Int. J. of Nanosciense, Vol. 3, Nos. 1&2 (2004) 51-57

[2]. И.В. Маликов, Л.А. Фомин и Г.М. Михайлов, Нанофизика и наноэлектроника, материалы симпозиума Нижний Новгород 2005

Электромагнитно индуцированная прозрачность в кристаллах магнитных молекул

А.В. Швецов, Г.А. Вугальтер

Нижегородский госуниверситет им. Н.И. Лобачевского, пр. Гагарина, 23, Нижний Новгород, Россия e-mail: vugalter@phys.unn.ru

Оптические свойства газа радикально под действием резонансного меняются лазерного излучения [1]. При этом исчезает поглощение слабого сигнала, соответствующего переходу на другой резонансной частоте, и резко уменьшается групповая скорость слабого сигнала. Этот эффект получил название электромагнитно индуцированной прозрачности (EIT) [2]. Эффект EIT открыл новые возможности для нелинейной оптики и квантовой обработки информации. Харрис [3] впервые обратил внимание на классический аналог EIT параметрическое взаимодействие волн в плазме (см. также [4]).

Наблюдение EIT в твердых телах затруднено слишком малыми временами релаксации оптических переходов. По мнению авторов обзора [1], исключение составляют спиновые степени свободы в широком классе конденсированных сред, в частности, в диэлектриках, легированных редкоземельными ионами. Цель настоящей работы – теоретически исследовать эффект EIT в кристаллах магнитных молекул. Такие кристаллы интенсивно исследуются в последние годы, поскольку, во-первых, им присущ эффект макроскопического квантового туннелирования намагниченности [5], вовторых, они интересны с прикладной точки зрения, в частности, как источники мощного электромагнитного излучения терагерцевого диапазона [6-8].

Магнитные молекулы характеризуются сильной одноосной анизотропией. Будем рассматривать молекулы с полным спином S>>1. В отсутствие магнитных полей и в пренебрежении поперечной анизотропией все энергетические уровни молекулы дважды вырождены $E_m = -Dm^2$ (m=S,S-1,...,-S). Наличие поперечной анизотропии или магнитного поля, перпендикулярного легкой оси анизотропии молекулы, вызывает туннелирование между состояниями с противоположными проекциями спина, при этом происходит расщепление уровней на дублеты [5] (рис. 1). Собственные функции, соответствующие нижнему и верхнему уровням расщепленного дублета, симметричны (относительно замены $m \rightarrow -m$) и антисимметричны соответственно. Мы рассматриваем кристалл магнитных молекул при низких температурах, так что почти все молекулы находятся на нижнем уровне основного дублета ($\Delta E/k_BT << 1$, где ΔE – расщепление основного дублета).

Рис.1. Два нижних дублета магнитной молекулы

Пусть к кристаллу приложено сильное переменное магнитное поле $H_1(t)=H_1 sin \omega_1 t$, резонансное для переходов между уровнями ε_2 и ε_1 , и поле $H_2(t)=H_2 sin \omega_2 t$, резонансное для переходов между уровнями ε_2 и ε_0 . В силу симметрии и антисимметрии волновых функций отличны от нуля лишь следующие матричные элементы операторов проекции спина: $\langle \varphi_1 / \hat{S}_y / \varphi_2 \rangle$, $\langle \varphi_1 / \hat{S}_z / \varphi_2 \rangle$ (для φ_1 , φ_2); $\langle \varphi_0 / \hat{S}_x / \varphi_2 \rangle$ (для φ_0 , φ_2). Поэтому будем полагать поле H_2 направленным вдоль оси x, а поле H_1 – вдоль оси y. Тогда гамильтониан магнитной молекулы имеет вид:

$$\hat{H} = -D\hat{S}_z^2 - g\mu_B \hat{S}_x H_0 + \hat{H}_{tr} + \hat{V},$$

$$\hat{V} = -g\mu_B \left(H_1 \hat{S}_y \sin \omega_1 t + H_2 \hat{S}_x \sin \omega_2 t \right),$$

где z – легкая ось анизотропии, D – константа анизотропии, $g - \phi$ актор Ланде, $\mu_B - магнетон$ Бора, H_0 – постоянное магнитное поле, \hat{H}_{tr} – оператор энергии поперечной анизотропии. В силу предположения о малости температур мы можем не рассматривать состояния, соответствующие уровням выше ε_2 . Следует отметить, что в магнитных молекулах расщепление основного и первого возбужденного дублетов много меньше, чем расстояние между ними. Поэтому существенным является равенство матричных элементов $< \varphi_0 / \hat{S}_r / \varphi_3 >$, нулю $<\varphi_0/\hat{S}_v/\varphi_2>, <\varphi_1/\hat{S}_v/\varphi_3>.$ При этом сильная резонансная связь (за счет поля H_1) уровней ε_2 и $\varepsilon_0, \varepsilon_3$ и ε_1 отсутствует и уровень ε_3 можно не учитывать. Мы приходим к трехуровневой системе, которую будем описывать матрицей плотности ρ_{mn} . Воспользуемся уравнением для недиагональных элементов матрицы плотности [9]

$$\dot{\rho}_{mn} = -i\rho_{mn}\left(\omega_{mn} + (V_{mm} - V_{nn})/\hbar - i\gamma_{mn}\right) - (i/\hbar)(V_{mn}(\rho_{nn} - \rho_{mm}) + V_{mk}\rho_{kn} - \rho_{mk}V_{kn}),$$

$$m \neq n, \ k \neq m, n$$

Здесь $\omega_{mn} = (\varepsilon_m - \varepsilon_n)/\hbar$, а γ_{mn} – релаксационные константы соответствующих переходов. Рассмотрим стационарный случай $\dot{\rho}_{nn} = 0$. В приближе-

нии вращающейся волны $\rho_{mn}(t) = \tilde{\rho}_{mn} exp(i\omega_l t)$ $(l=1,2,3, \omega_3 = \omega_2 - \omega_1)$

$$\widetilde{\rho}_{01}(\omega_{10}) = (\nu \widetilde{\rho}_{12}^* + \widetilde{\rho}_{02} u^*) / \Gamma_3 , \widetilde{\rho}_{02}(\omega_{20}) = (\nu (\rho_{22} - \rho_{00}) - \widetilde{\rho}_{01} u) / \Gamma_2 , \widetilde{\rho}_{12}(\omega_{21}) = (u (\rho_{22} - \rho_{11}) - \widetilde{\rho}_{01}^* v) / \Gamma_1 ,$$

где $u=g\mu_BH_1<\varphi_1/\hat{S}_y/\varphi_2>/2\hbar$, $v=g\mu_BH_2<\varphi_0/\hat{S}_x/\varphi_2>/2\hbar$ – частоты Раби, $\Gamma_l=(\gamma_{nm}+i\varDelta_l)$, $\varDelta_l=\omega_l-\omega_{mn}$ – малая отстройка от резонанса. Из уравнений для диагональных элементов следует, что восприимчивость системы $\chi\sim\partial<\hat{S}_z>/\partial H_2$ будет определяться реальной частью (- $v~\rho_{02}$). Выражая ρ_{02} из трех приведенных выше уравнений, находим

$$\tilde{\rho}_{02} = \frac{\nu(\rho_{22} - \rho_{00})}{\Gamma_2(1 + p\eta + \xi)} \left(1 + p\eta - \frac{\rho_{22} - \rho_{11}}{\rho_{22} - \rho_{00}}\eta\right),$$

где $p=|v|^2/|u|^2$, $\eta=|u|^2/\Gamma_3\Gamma_1^*$, $\xi=|u|^2/\Gamma_3\Gamma_2$. Γ_2^{-1} характеризует частотную зависимость обычной восприимчивости (как если бы сильное переменное поле $H_1(t)$ отсутствовало). Все остальные множители являются следствием модификации нашей системы под действием сильного резонансного поля.

Считая амплитуду поля H_2 малой по сравнению с амплитудой сильного резонансного поля H_1 , т.е. p << 1, из уравнения для диагональных элементов матрицы плотности получаем (ρ_{22}/ρ_{00}), (ρ_{11}/ρ_{00})~p. Таким образом, заселенности верхних уровней малы по сравнению с первым. Учитывая, что величины η и ξ одного порядка, окончательно получаем

$$\operatorname{Re}(-\widetilde{\rho}_{02}\upsilon) = \left|\upsilon\right|^{2}\operatorname{Re}\left(\frac{1}{\Gamma_{2}(1+\xi)}\right).$$

Рис.2. Зависимость мнимой части восприимчивости от расстройки по частоте поля H_2 (для пунктирной линии амплитуда поля H_1 в два раза меньше, чем для сплошной). χ_0 – значение восприимчивости при $H_1=0$ в случае точного резонанса

На рис. 2 изображена частотная зависимость мнимой части восприимчивости для двух значений амплитуды поля H_1 . Под влиянием сильного резонансного поля $H_1(t)$ происходит образование окна прозрачности (ширина окна равна удвоенной частоте Раби). Это и есть эффект EIT. Графики построены для случая $\Delta_1=0$ ($\omega_1=\omega_{21}$). В случае точного резонанса $\omega_2=\omega_{20}$ восприимчивость уменьшается в $|u|^2/(\gamma_{02}\gamma_{01})$ раз по сравнению с восприимчивостью в отсутствие поля $H_1(t)$.

Чтобы эффект ЕІТ был существенно выражен, необходимо, чтобы частота Раби *и* значительно превосходила $1/\tau$. Так, например, при $u\tau\sim 10$ восприимчивость при точном резонансе $\omega_2 = \omega_{20}$ уменьшается в $(u\tau)^2 \sim 100$ раз (рис. 2). Времена релаксации в кристаллах на основе магнитных молекул Fe₈ и Mn₁₂-ацетата порядка $\tau\sim 10^{-10}$ с при $T\sim 30K$ [10]. При понижении температуры времена релаксации увеличиваются и для наблюдения эффекта достаточны значения частоты Раби $\sim 10^{10}c^{-1}$. Это означает, что амплитуда сильного резонансного магнитного поля должна составлять $H_1\sim 100\Gamma c$.

В заключение следует отметить, что времена релаксации для магнитных молекул экспериментально определяются по характерному уширению линий ЭПР. В работе [10] подчеркивалось, что ширина этих линий зависит в основном от разброса энергетических параметров молекул (констант анизотропии, g-Таким образом, неоднородное фактора). уширение значительно больше однородного и, следовательно, наблюдение эффекта электромагнитно индуцированной прозрачности возможно при меньших амплитудах переменного магнитного поля H_1 при условии, что разброс частот переходов меньше частоты Раби (в более совершенных кристаллах). Наличие разброса констант анизотропии приведет лишь к уширению пиков восприимчивости.

Работа выполнена при поддержке целевой программы "Развитие научного потенциала высшей школы", грант РНП.2.1.1.2363.

[1] Fleishhauer M., Imamoglu A., Marangos J.P., Rev. Modern Phys., **77**, 633 (2005).

[2] Harris S.E., Field J.E., and Imamoglu A., Phys. Rev. Lett., **64**, 1107 (1990).

[3] Harris S.E., Phys. Rev. Lett., 77, 5357 (1996).

[4] Litvak A. and Tokman M.D., Phys. Rev. Lett., **88**, 095003 (2002).

[5] Chudnovsky E.M. and Tejada J., *Macroscopic Quantum Tunneling of the Magnetic Moment* (Cambridge University Press, Cambridge, England, 1988).

[6] Chudnovsky E.M. and Garanin D.A., Phys. Rev. Lett., **89**, 157201 (2002).

[7] Yukalov V.I. and Yukalova E.P, Europhys. Lett., **70**, 306 (2005).

[8] Швецов А.В., Вугальтер Г.А., Токман И.Д., Поверхность. Рентгеновские, синхротронные и нейтронные исследования, 2006, №2, с. 102-109.

[9] Блум К., Теория матрицы плотности и ее приложения., М.: Мир, 1983.

[10] Kyungwha Park et al., Phys. Rev. B **66**, 144409 (2002).

Магнитные плёнки из монодисперсных никелевых наночастиц.

Д.С. Ильющенков¹, М.А. Одноблюдов¹, Д.А. Явсин¹, В.М. Кожевин¹,

<u>И.Н. Яссиевич</u>¹, С.А. Гуревич¹, Т.Т. Nguyen², Е. Bruck².

¹ФТИ им. А.Ф. Иоффе РАН, Политехническая ул. 26, Санкт-Петербург, Россия.

²Van der Waals – Zeeman Institute, University of Amsterdam,

Valckenierstaat 65, NL-1018 XE Amsterdam, The Netherlands.

e-mail: Irina.Yassievich@mail.ioffe.ru

свойства ферромагнитных Магнитные наночастиц проявляют две фундаментальные особенности: 1) они представляют из себя один домен и 2) для них характерно резкое увеличение энергии анизотропии. При размерах частицы ниже критического, порядка 10 – 100 нм. энергетически становится не выгодным образование доменов, и вся частица является одним доменом, т.е. постоянным магнитом [1]. Увеличение энергии анизотропии обычно связывают с нарушением кристаллической симметрии вблизи поверхности, роль которой значительна для малых частиц.

Наночастицы ИЗ ферромагнитных материалов интенсивно изучаются в настоящее время [2], так как они не только представляют новый интересный физический объект, но также открывают возможность создания совершенно новых материалов для различных применений в устройствах для записи информации, медицинской диагностики, катализа и т.д. Чтобы реализовать этот потенциал требуется понимание того, как они взаимодействуют в плотных ансамблях, т.е. выяснение роли обменного и дипольного взаимодействий в таких системах.

В данной работе мы представляем первые результаты исследования магнитных плёнок наночастиц никеля, полученных методом лазерной электродисперсии [3], разработанным в ФТИ им. А.Ф. Иоффе. Главной особенностью этой технологии является то, что полученная плёнка состоит из практически монодисперсных частиц металла, с дисперсией размера <10%, при этом размер частиц фиксирован и зависит от самого металла. В основе метода лежит явление капиллярной неустойчивости расплавленных металлических капель субмикронного размера, которые вследствие зарядки в плазме лазерного факела начинают каскадным образом делиться на более мелкие. Процесс деления резко обрывается, когда капли достигают нанометрового размера. Расплавленные наночастицы, изначально формируемые в плазменной области, из-за быстрого охлаждения затвердевают ещё до осаждения на подложку. Как показали картины дифракции электронов, снятые в режиме просвечивающей электронной микроскопии, полученные для случая Си, образовавшиеся наночастицы аморфны [4].

В наших экспериментах плёнки были получены при облучении мишени из никеля излучением неодимового лазера YAG:Nd³⁺ (длина волны $\lambda = 1.06$ мкм) с длительностью импульса ~30 нс и энергией в импульсе до 0.3 Дж. Для никеля диаметр наночастиц составляет 2.5 нм [4], что соответствует числу атомов ~600. Эти частицы экстрагировались из лазерного факела при помощи зоны неоднородного электрического поля и осаждались на подложку, в качестве которой использовались пластины термически окисленного кремния с толщиной окисленного слоя 0.5 мкм.

Исследования магнитных свойств были проведены в лаборатории университета Амстердама для плёнок двух размеров: 1) толщиной 10 нм и 2) толщиной 50 нм.

Результаты, полученные для тонкой плёнки толщиной 10 нм, продемонстрировали, что здесь мы имеем дело с ансамблем невзаимодействующих магнитных частиц, так называемых суперпарамагнетиков. При высоких температурах система ведёт себя как обычный парамагнетик. Намагниченность определятся законом Ланжевена со значением магнитного момента μ частицы, превышающим во много

раз магнетон Бора μ_B .

Суперпарамагнетики характеризуются блокирующей температурой T_B , которая определяется величиной энергии анизотропии, определяющей высоту энергетического барьера между двумя эквивалентными минимумами энергии, соответствующими направлению момента наночастицы вдоль направления оси легчайшего намагничивания: $E_B = KV$, где V – объём наночастицы, а K – плотность энергии анизотропии. Время релаксации т определяется этой энергией [5]:

$$\tau = \tau_0 \exp\left(KV / k_B T\right). \tag{1}$$

Блокирующая температура T_B обычно определяется из условия, что время релаксации превышает 100 с, т.е. система за времена измерения не успевает переходить из одного энергетического минимума в другой:

$$T_{B} = KV/k_{B} \ln(100/\tau_{0})$$
. (2)

Рис.1 Петля гистерезиса: плёнка 10 нм, Т=5К.

Поскольку типичное значение $\tau_0 \sim 10^{-9}$ с, принято, что энергия анизотропии связана с блокирующей температурой соотношением:

$$KV = 25k_B T_B. (3)$$

Ниже блокирующей температуры наблюдается гистерезис (см. рис. 1). С повышением температуры петля гистерезиса сужается, и значение коэрцитивного магнитного поля H_{ci} уменьшается согласно [2]:

$$H_{ci} = \frac{50k_B T_B}{\mu} \left(1 - \sqrt{\frac{T}{T_B}} \right), \tag{4}$$

что и наблюдалось в эксперименте (см. рис. 2). Из полученных данных были найдены значения: $T_B = 300 K$ и $\mu = 1.5 \cdot 10^6 \mu_B$

В присутствии магнитного поля блокирующая температура зависит от значения магнитного поля по закону [2]:

$$T_B(H) = T_B \left(1 - \frac{\mu H}{50k_B T_B} \right)^2, \qquad (5)$$

где T_B – блокирующая температура в отсутствии поля. На рис. 3 представлены результаты измерения блокирующей температуры $T_B(H)$, полученные с помощью метода [6] измерения температурной зависимости намагниченности при охлаждении в присутствии и отсутствии магнитного поля. Теоретическая кривая на рис. 3 получена из закона (5) с параметрами $T_B = 253K$ и $\mu = 0.93 \cdot 10^6 \mu_B$, что неплохо согласуется со значениями, полученными из температурной зависимости H_{ci} .

образом, Таким ΜЫ получили, что «частица» содержит $\sim 10^{3}$ однодоменная наночастиц никеля диаметром 2.5 нм. С такой оценкой согласуется И значение объёма однодоменной полученное «частицы», ИЗ величины блокирующей температуры согласно уравнению (3) с использованием значения $K = 8 \cdot 10^5$ эрг/см³ из работы [7].

Рис.2 Температурная зависимость коэрцитивного поля и остаточной намагниченности. Вставка демонстрирует справедливость закона (4).

Рис. З Зависимость блокирующей температуры от магнитного поля, определённая по методу [6].

Для толстых образцов 50 нм обнаружены аномалии в магнитных свойствах, которые показывают, что такие образцы представляют собой необычные спиновые стекла.

В заключение, мы продемонстрировали, что плёнки толщиной 10 нм ведут себя как ансамбль независимых однодоменных «частиц», состоящих примерно из 1000 никелевых наночастиц каждая. Естественно предположить, что за образование таких магнитных структур, устойчивых вплоть до высоких температур, отвечает обменное взаимодействие.

- [1] C. Kittel, Phys. Rev. 70, 965 (1946).
- [2] C.L. Dennis et al., J. Phys: Condens. Matter 14, R1175 (2000).
- [3] V.M. Kozhevin et al., J. Vac. Sci. Tech. B **18** (3), 1402 (2000).
- [4] T.N. Rostovshchikova et al., Appl. Catal. A: General **296**, 70 (2005).
- [5] L. Neel, Ann. Geophys. 5, 99 (1949).
- [6] M.F. Hansen, S. Morup, J. Magn. Magn. Mater. **203**, 214 (1999).
- [7] F.C. Fonseca et al., Phys. Rev. B 66, 104406 (2002).

Исследование спин-туннельных магниторезистивных переходов

В.В. Амеличев¹, <u>А.И. Галушков¹</u>, С.И. Касаткин², А.М. Муравьёв², Ф.А. Пудонин³, А.И. Крикунов⁴

¹Государственное учреждение Научно-производственный комплекс «Технологический Центр» МИЭТ, г.Зеленоград, e-mail: <u>gal@tcen.ru</u> ²Институт проблем управления РАН, г. Москва ³Физический Институт РАН, г.Москва ⁴Фрязинский филиал Института радиотехники и электроники, г.Фрязино

Сегодня наноэлектроника и одно из её направлений спинтроника являются передовыми отраслями, определяющими технологический уровень страны. Патентная служба США сформулировала первое официальное определение наноизделия, согласно которому оно является таковым, если, по крайней мере, один из его размеров находится в диапазоне от 1 до 100 нм и этот размер существенен для функционирования изделия. Элементы магнитной спинтроники полностью соответствуют этому определению.

Магнитные элементы, благодаря таким своим достоинствам, как энергонезависимость и неограниченное число циклов перезаписи для запоминающих и логических элементов, широкий температурный диапазон, стойкость, радиационная возможность использования планарной мультичипной технологии, совместимой с полупроводниковой, работоспособность при субмикронных и размерах занимают среди разрабатываемых в мире наноэлементов одно из важнейших мест.

Одно из наиболее активно развиваемых в мире направлений магнитной спинтроники разработка наноэлементов на основе многослойных тонкоплёночных наноструктур, обладающих магниторезистивным (MP)эффектом. В данный момент значительный практический интерес представляют наноструктуры с гигантским МР эффектом по причине их проявления в малых магнитных полях. Примерами подобных МР элементов являются разработанные к настоящему времени и выпускаемые фирмой NVE спин-вентильные магнитного поля и MP датчики тока, гальванические развязки. С 2003 года фирмой Motorola начат выпуск 4М-битного однокристального спин-туннельного МР ЗУПВ. Ведутся разработки спиновых транзисторов и МР логических наноэлементов.

Основой спин-туннельного МР наноэлемента является магниточувствительный спин-туннельный МР переход с вертикальным протеканием сенсорного тока [1]. МР свойства перехода определяются спин-туннельной МР наноструктурой. Нами отработана и

MP исследована спин-туннельная Ti-FeNi-Al₂O₃-Co-Ti, наноструктура обладающая раздельными полями Напомним, что величина перемагничивания. изменения магнитосопротивления наноструктуры пропорциональна косинусу угла векторами намагниченности между ферромагнитных плёнок. Определены оптимальные толщины слоёв и режимы её магнитных получения. Толщины плёнок находятся диапазоне 9 - 10нм в диэлектрической плёнки – 1,5–1,0 нм. Поля пермаллоевой перемагничивания плёнки составляют 5-8 Э, кобальтовой плёнки - 15-20 Э.

Наиболее перспективны наноструктуры с применением вместо кобальтовой плёнки плёнки пермаллоя с прилежащим к ней FeMn фиксирующим или IrMn антиферромагнитным слоем, увеличивающим благодаря обменному взаимодействию её поле перемагничивания. Нами были получены Ті-FeNi-Al₂O₃-FeMn-FeNi-Ti спин-туннельные MP наноструктуры с полем фиксации до 40 Э. Однако по причине низкой повторяемости магнитных свойств этих наноструктур для изготовления спин-туннельных МР переходов использовались наноструктуры с кобальтовой Диэлектрический плёнкой. слой Al_2O_3 изготовлялся двумя способами: распылением с мишени или напылением Al с последующим его окислением.

Конструкция спин-туннельного MP перехода приведена на рис.1. На окисленной кремниевой подложке формируется нижний титановый проводник, на котором расположена спин-туннельная МР полоска с застрёнными для уменьшения размагничивающих магнитных полей концами. Её закрывает разделительный слой SiO₂ с окном для контакта с верхним алюминиевым проводником. Вся конструкция защищена слоем SiO₂. Были разработаны тестовые конструкции спин-туннельных МР переходов с 10 вариантами размеров МР полосок от 5 мкм до 100 мкм. На рис.2 представлен фотоснимок одной из тестовых конструкций спин-туннельного МР перехода,.

Рис.1. Топология СТМР перехода

сделанный на промежуточном этапе ее создания.

Одной из основных нестандартных технологических операций является однородное травление спин-туннельной МР наноструктуры без существенного подтрава нижнего титанового проводника, на который она нанесена, и формирование спин-туннельной МР полоски с заострёнными прямоугольной концами с одинаковой формой всех её слоёв. Неравномерный перетрав слоёв полоски приводит, в том числе, к появлению балластного сенсорного тока, протекающего через полоску, т.е. к браку. На сегодня эта проблема до конца не решена из-за различий в травлении слоёв, входящих в состав спинтуннельной МР наноструктуры.

Для создания датчика магнитного поля и тока, запоминающего и логического элемента к спин-туннельному МР переходу необходимо добавить от одного до трёх планарных проводников управления, разделённых слоями SiO₂. При протекании через них токов управления на спин-туннельную МР полоску действуют магнитные поля, направленные вдоль и поперёк ОЛН.

Одной из основных проблем спинтуннельных МР переходов является их высокая чувствительность к пробою статическим электричеством, что требует принятия дополнительных мер предосторожности при изготовлении этих наноэлементов. В качестве одной из таких мер нами было предпринято изготовление замкнутых между собой нижних и верхних проводников при изготовлении спинтуннельного МР перехода. После сборки в немагнитный корпус производится разделение проводников, по которым протекает сенсорный ток.

Другой серьёзной проблемой, не решённой до сих пор, является низкое допустимое с точки зрения пробоя напряжение питания СТМР перехода. До недавнего времени эта величина составляла 0.1 В, но в статьях

Рис. 2. Фотоснимок тестовой конструкции СТМР перехода.

появилась информация о возможности приложения к спин-туннельному МР переходу более высокого напряжения питания – до 1 В.

Исследования, в том числе и более спин-туннельных MP ранние, переходов показали наличие в единичных образцах спинтуннельного МР эффекта, но образцы быстро деградируют. По нашему мнению, основными причинами малого числа образцов со спинтуннельным МР эффектом и их деградации являются невысокое поле перемагничивания Со плёнки, наличие дефектов в диэлектрическом слое. прохождение сенсорного тока по перетравленным участкам полоски и повреждения спин-туннельных МР переходов при подключении к измерительной схеме.

Основными задачами, требующих первоочерёдного решения, являются повышение повторяемости магнитных свойств наноструктур с фиксирующим FeMn слоем, улучшение диэлектрических свойств слоя Al₂O₃ и доработка ряда технологических процессов формирования спин-туннельного MP перехода.

Работа поддержана грантом РФФИ № 04-02-08248 (офи_а).

[1] Касаткин С.И., Васильева Н.П., Муравьев А.М. Многослойные тонкопленочные магниторезистивные элементы. //Тула. Изд. Гриф. 2001. 186 с.

Особенности гигантского магнетосопротивления в системе ферромагнетик-полимер

<u>А.Н.Лачинов¹</u>, Н.В.Воробьева¹, А.А.Лачинов²

¹Институт физики молекул и кристаллов Уфимского научного центра РАН, пр. Октября 151, Уфа, Россия. ²Башкирский Государственный Университет, ул. Фрунзе, 32, Уфа, Россия E-mail: Lachinov@anrb.ru

В работе [1] сообщалось об обнаружении гигантского магнетосопротивления (ГМС) в системе ферромагнетик-электроактивный полимер-немагнитный металл. Явление ГМС в такой структуре заключалось в том, что при достижении магнитного определенной величины поля резкое изменение происходило eë сопротивления, рис.1. Сопротивление изменялось на 6-8 порядков от образца

Рис.1. Зависимость тока, протекающего через структуру Ni-polymer-Cu, от величины магнитного поля. Исходное сопротивление структуры составляло $R \sim 10^8$ Ом Величина приложенного напряжения 5 В, стрелками показано направление изменения магнитного поля

к образцу. Явление было обратимым, но с небольшим гистерезисом. Для разных отличавшихся образцов, условиями приготовления толщиной И полимерного слоя. характерные величины магнитного поля регистрировались в интервале от 50 до 180 мТ.

В одной и той экспериментальной структуре можно было наблюдать два вида ГМС – с положительным и отрицательным

Рис.2 Зависимость величины тока, протекающего через образец от приложенного одноосного давления. Стрелками показаны области выбора давления для обеспечения начального сопротивления образца. Знаки «+» и «-» соответствуют знаку получаемого эффекта ГМС

коэффициентом магнетосопротивления. Это зависело OT того. В каком начальном (при H=0) по проводимости полимерная состоянии находилась пленка. Если пленка имела большое сопротивление (R $\sim 10^8$ Ом), то регистрировался положительный эффект ГМС. Если пленка находилась в состоянии с малым сопротивлением (R ~ 10 Ом), то отрицательный ГМС. Для задания начального сопротивления было достаточно малого одноосного давления [2]. На рис. 2 приведена сопротивления зависимость такой полимерной пленки от давления.

Природа поведения системы в магнитном поле до конца не ясна.

Цель настоящей работы заключалась В изучении вклада инжекционного механизма в ГМС. В с ЭТИМ, было проведено связи исследование влияния магнитного поля транспорт носителей заряда в на зависимости от величины и полярности приложенного электрического поля.

На рис. 3 представлены вольтамперные характеристики экспериментальной структуры Niполимер-Си в зависимости от величины внешнего магнитного поля. При нулевом магнитном поле наблюдается асимметричность в форме ВАХ при разной полярности напряжения. При увеличении магнитного поля. асимметрия BAX изменяет свой токах характер. При малых И положительной полярности на медном электроде магнитное поле приводит к фактическому «запиранию» проводимости в системе Ni-полимер-Си значений электрического ЛО поля порядка 1 В. Затем, при увеличении напряжения, ток в системе начинает резко увеличиваться.

Анализ полученных вольтамперных характеристик позволяет сделать следующие выводы. Внешнее магнитное поле оказывает сильное влияние на перенос заряда в системе Niполимер-медь. При малых значениях поля это влияние носит монотонный характер, приводя к незначительному уменьшению проводимости системы. При превышении магнитным полем значения порядка 150 -200мΤ сопротивление образца резко уменьшается. При этом изменяется и форма ВАХ. На характеристике четко выделяются три области: при малых напряжениях линейная область, вторая область является сверхлинейной с большим показателем степени - почти вертикальный участок. И опять линейный участок, но со значительно большим углом наклона по сравнению с первым. На рис.3 ВАХ видно, что при 300 мΤ практически имеет горизонтальный участок вплоть до 1 В. В третьей области наклон кривых ВАХ

практически одинаковый, отличия в

Рис.3. Вольтамперные характеристики структуры Fe-Ni- полимер-Си при различных значениях магнитного поля в интервале 0 – 300 мТ. Стрелками указано направление увеличения магнитного поля. Кривые измерены при последовательном изменении магнитного поля с шагом 50 мТ.

величине протекающего тока при данном значении магнитного поля. Форма, которую приобретает ВАХ в магнитном поле является типичной для переноса заряда с участием инжекционного механизма. Фактически, эти результаты свидетельствуют о том, регистрируемый что эффект гигантского магнетосопротивления может иметь природу инжекционного магнетосопротивления, гигантского потому этот эффект и реализуется практически на одной границе раздела ферромагнетик-электроактивный полимер.

Литература

1. А.Н.Лачинов, Н.В.Воробьева, Б.А.Логинов, Симпозиум «Нанофизика и наноэлектроника» Н.Новгород 25-29 марта 2005 г. стр. 215-218

2. А.Н.Лачинов, В.М.Корнилов, Т.Г.Загуренко, А.Ю.Жеребов, ЖЭТФ, 2006, т. 129, вып. 3, стр. 1-7.

Spin-polarization effects in quantum films based on narrow-band semiconductors

L. S. Isaev¹, Y. S. Joe¹, and <u>A.M.Satanin²</u>

¹Department of Physics and Astronomy, Ball State University, Muncie, IN 47306, USA ²Institute for Physics of Microstructures of the RAS, GSP-105, Nizhny Novgorod, Russia

email: arkady@ipm.sci-nnov.ru

The possibility of the electron spin utilization in nanosize semiconductor devices has been a subject of active investigations for a long time [1]. Recently this problem became especially attractive in connection with the growing technological potential to synthesize structures with given parameters. One of the central problems of spintronics is the experimental realization of the source of polarized electrons. The spin filters, on the basis of some wide gap semiconductor structures were discussed in [2-4]. The working principle of these devices consists of utilization of Rashba's effect for spin - splitting of the resonant levels, that in principle allows to block one of the tunneling channels. In reality, however, the efficiency of such sources turns out to be low, since Rashba's effect, being perturbative in its nature, can not lead to a big separation of spin split levels.

The implication of narrow-gap semiconductors with strong spin-orbit interaction for filtering may significantly improve the characteristics of existing sources of polarized electrons. In the present work we study the size-quantized spectrum of a film with variable energy gap, based on compounds of $Pb_{1-x}Sn_x(S,Se)$. It is known [5,6] that the variation of the fraction x in the mentioned alloys mainly leads to the variation of the forbidden band width. Therefore, it is possible to create structures via spatial modulation of the fraction. For instance, such compound $Pb_{1-r}Sr_rSe$ with variable gap were realized and investigated in [7]. We will focus on the one-dimensional energy gap modulation in < 111 >direction. In this case the electron and hole dispersions can be found exactly.

Electronic spectrum (near the L – point of the Brillouin zone) of lead salts and corresponding alloys is most accurately described in terms of Dirac's model:

$$H = s(\vec{\alpha} \cdot \vec{p}) + (\varepsilon_g / 2)\beta, \qquad (1)$$

where $\vec{\alpha}$ and β – Dirac's matrices, \mathcal{E}_g - energy gap width, $s = P/m_0$ – characteristic velocity, proportional to the matrix element P of the momentum between the extrema valence and conduction band states (m_0 - free electron mass). The envelope ψ of the wavefunction is a 4 – spinor by its transformational properties. It is necessary to note, that in the model (1) the spin – orbit interaction is taken into account exactly and the spin splitting of the bands in the regime of size-quantization may be comparable with the gap. The most general form of the boundary conditions (BC) which is allowed by the Hamiltonian (1) and makes the current vanish at the surface Σ of the system, is:

 $(1 + \beta \sin \vartheta + i\beta (\vec{\alpha} \cdot \vec{n}) \cos \vartheta) \psi \mid_{\Sigma} = 0. \quad (2)$

Here \vec{n} is the external normal to the surface Σ of the system, and \mathcal{G} is a free parameter, describing the properties of the surface (see [8,9]). For $\mathcal{G} \neq 0, \pi$ the electron and hole spectra will be asymmetric. For $\mathcal{G} \geq \pi$ the BC allow for the existence of Tamm states [8].

We adopt the coordinate system, in which the film is bounded by the planes z = 0 and z = a. The energy gap width is assumed to be a function of the transverse coordinate *z* only:

$$\mathcal{E}_{g}(z) = \mathcal{E}_{0} + \lambda z, \quad \lambda > 0.$$
(3)

Similarly to the problem with a homogeneous film [9], in our case there exists an integral of motion:

 $T_z = diag(t_z, -t_z), t_z = \sigma_x p_y - \sigma_y p_x$, (4) which allows us explicitly uncover the spinor structure of the wavefunction. Eigenvectors of t_z are determined by the equation: $t_z U_{\tau \vec{p}} = \tau p_\perp U_{\tau \vec{p}}$, $\tau = \pm 1$, and p_\perp is the momentum along the film. Since $[T_z, H] = 0$, the spinor structure of the wavefunction ψ may be represented in the form:

$$\psi_{\tau\bar{p}} = \begin{pmatrix} (A(z) + B(z))U_{\tau\bar{p}_{\perp}} \\ -i(A(z) - B(z))U_{-\tau\bar{p}_{\perp}} \end{pmatrix}, \quad (5)$$

where A(z) and B(z) are unknown amplitudes to be determined and $T_z \psi_{\tau \vec{p}_\perp} = \tau p_\perp \psi_{\tau \vec{p}_\perp}$. The amplitudes obey :

$$-\tau p_{\perp}sA + (-ip_{z}s + \varepsilon_{g}(z)/2)B = \varepsilon A,$$

(ip_{z}s + \varepsilon_{g}(z)/2)A + \tau p_{\perp}sB = \varepsilon B. (6)

Solution of (6) leads to the following expressions for the amplitudes: A(x) = D(x) = D(x)

$$A(z) = c_1 D_{\nu}(\xi) + c_2 D_{\nu}(-\xi),$$

$$B(z) = \frac{c_1 \nu \sqrt{\lambda \hbar s}}{\varepsilon - \tau p_{\perp} s} D_{\nu-1}(\xi) - \frac{c_2 \nu \sqrt{\lambda \hbar s}}{\varepsilon - \tau p_{\perp} s} D_{\nu-1}(-\xi),$$

where $\nu \equiv (\varepsilon^2 - p_{\perp}^2 s^2) / \lambda \hbar s$, $\xi \equiv \varepsilon_g(z) / \sqrt{\lambda \hbar s}$
and $D_{\nu}(x)$ - parabolic cylinder function. The

constants c_1 and c_2 are determined from the BC (3) at z = 0, a and the normalization condition. The dispersion equation has the form:

$$\mu \left(tg^2 \frac{\theta}{2} Q_{\nu}(\xi_0, -\xi_a) - Q_{\nu}(-\xi_0, \xi_a) \right) +$$

$$tg \frac{\theta}{2} \left(W_{\nu}(\xi_0, \xi_a) - \mu^2 (W_{\nu-1}(\xi_0, \xi_a)) \right) = 0,$$
were $\xi_0 = \varepsilon_g(0) / \sqrt{\lambda \hbar s}, \quad \xi_a = \varepsilon_g(a) / \sqrt{\lambda \hbar s},$

$$\mu = \nu \sqrt{\lambda \hbar s} / (\varepsilon - \tau sp_{\perp}),$$

$$Q_{\nu}(\xi, \xi') = D_{\nu-1}(\xi) D_{\nu}(\xi') + D_{\nu-1}(\xi') D_{\nu}(\xi),$$

$$W_{\nu}(\xi, \xi') = D_{\nu}(\xi) D_{\nu}(-\xi') - D_{\nu}(-\xi) D_{\nu}(\xi').$$

Solutions of this equation then give the electron dispersion. In Fig. 1 as an example the electron dispersion is plotted for a lowest size-quantized subband. We see that the magnitude of the spin – splitting strongly depends on the properties of the surface of the film.

Fig.1. Electron dispersion for parameter $\mathcal{G} = 3\pi / 4$. The width of the film is *10 nm*, the gradient of the energy gap is $\lambda = 7.84 \cdot 10^5 eV / cm$. Triangles correspond to $\tau = +1$, diamonds correspond to $\tau = -1$.

In order to better understand the obtained results, it is useful to consider slow variation of the energy gap width. We will also assume that the electron momentum along the film is small compare the characteristic gap and consider only low-lying sizequantized subbands, when two independent equations may be obtained for upper and lower components of wavefunction. The effective Hamiltonian acting on the two component upper spinor has the form:

$$H = s^2 p_\perp^2 / \overline{\varepsilon}_g + \chi t_z,$$

where $\chi = -(\hbar s^2/2)\partial_z(1/\varepsilon_g)$. The electron dispersion up to the first order is therefore: $\varepsilon_{\tau}(p_{\perp}) = s^2 p_{\perp}^2/\overline{\varepsilon}_g + \tau \chi p_{\perp}$. Here $\overline{\varepsilon}_g$ is the bare energy gap width and $\tau = \pm 1$

corresponds to the two spin projections. We see that in the limit of low energies the variable energy gap gives rise to the linear (Rashba) term in the electron dispersion. The electron spin polarization may be characterized by the operator t_{r} . We shall define the

polarization as
$$\mathsf{P} = \sum_{\tau} \tau \int f(\varepsilon_{\tau}(p_{\perp})) \frac{p_{\perp} dp_{\perp}}{2\pi\hbar^2}$$
,

where $f(\varepsilon_{\tau}(p_{\perp}))$ is Fermi function. The electron dispersion (Fig. 1) near its minimum may be well approximated by the usual quadratic expression. In this case it is easy to show, that at zero temperature and under the condition

$$\varepsilon_0 \equiv \left| \varepsilon_\tau \left(p_\perp = 0 \right) - \min_{\tau p_\perp} \varepsilon_\tau \left(p_\perp \right) \right| << \varepsilon_F,$$

the polarization degree is given by:

$$\mathsf{P} = 2\sqrt{\varepsilon_0} / \varepsilon_F , \qquad (7)$$

where \mathcal{E}_F is the Fermi energy. In Fig. 2 we plot the function $\mathsf{P}(\mathcal{G})$. Large maximal value of the

Fig. 2. Dependence of the polarization degree P on the boundary parameter ϑ in (2). The maximal value (~6%) is reached at $\vartheta = \pi / 2$.

polarization degree indicates that the considered quantum wells are good candidates as sources of spin – polarized electrons. However, we note that properties of the surface of the film play the crucial role, determining the magnitude of the splitting of the spectrum.

The work supported by the Russian Basic Research Foundation Grant No. 05-02-16762.

[1] I. Žutić, J. Fabin, S. Das Sarma, Rev. Mod. Phys. **76**, 323 (2004).

[2] E. de Andrara e Silva and G. C. La Rocca, Phys. Rev. **B59**, R15583 (1999).

[3] A. Voskoboynikov *et al*, Phys. Rev. **B59**, 12514 (1999).

[4] T. Koga et al, Phys. Rev. Lett. 88, 126601 (2002).

[5] J. O. Dimmock *et al.*, Phys. Rev. Lett. **16**, 1193 (1966)

[6] J.O.Dimmock, Proceedings of the Conference on the Physics of Semimetals and Narrow – Gap Semiconductors, Dallas, Texas 1970.

[7] H. Wu et al, Phys. Rev. B66, 045303 (2002).

[8] V. A. Volkov and T. N. Pinsker, Sov. Phys. Solid State 23, 1022 (1981).

[9] S. Yu. Potapenko and A. M. Satanin, Sov. Phys. Solid State **26**, 1067 (1984).

Гетероструктуры Si/Si_{1-x}Ge_x:Er/Si(100), выращенные методом сублимации кремния в среде германа

С.П.Светлов¹, <u>В.Ю.Чалков¹</u>, В.Г.Шенгуров¹, В.Н.Шабанов¹, С.А.Денисов¹, З.Ф.Красильник², Л.В.Красильникова², М.В.Степихова², Д.В.Шенгуров², Ю.Н.Дроздов²

¹ Научно-исследовательский физико-технический институт ННГУ им. Н.И.Лобачевского, Нижний Новгород, 603950 Россия ² Институт физики микроструктур РАН, Нижний Новгород, 603950 Россия

chalkov@nifti.unn.ru

Поиск путей реализации лазерных структур на основе кремния - базового материала современной микроэлектроники, большинство исследователей связывают с разработкой структур, легированных редкоземельной примесью эрбия. Наибольший интерес с точки зрения создания эффективных волноводов представляют гетероструктуры Si/Si1-xGex с легированными слоями твердого раствора.

Ранее [1,2] нами сообщалось об успешном использовании комбинированного метода выращивания гетероструктур Si/Si1-xGex:Er/Si (100), в котором основной компонент (Si) твердого раствора поступал на подложку в виде атомарного потока ИЗ сублимирующего источника, а второй компонент (Ge) - за счет пиролиза его гидрида, введенного в камеру роста. Легирование слоев эрбием осуществляли испарением этой примеси из сублимирующего кремниевого источника. Источник вырезали в виде прямоугольного бруска из монокристалла кремния, специально легированного эрбием в процессе выращивания.

Целью данной работы являлось исследование распределения толщины слоев, их состава и структурного совершенства по площади подложки и влияния условий роста на эти параметры.

Слои Si/Si_{1-x}Ge_x:Er толщиной 0.1 – 2.3 мкм выращивали при температуре $T_s = 500^{\circ}C$ методом сублимации кремния в среде германа. Рост гетероструктур проводили на установке, разработанной и изготовленной в НИФТИ ННГУ [3]. Откачку ростовой камеры осуществляли диффузионным и двумя геттероионными насосами ГИН -0.5. В качестве подложек использовались пластины монокристаллического кремния n- и р-типа проводимости с ориентацией (100). Пластины имели размер 75×10×0.5 мм и нагревались пропусканием тока. Атомарный поток кремния создавали сублимацией монокристалла этого элемента. Источники вырезали из слитков кремния в виде брусков размером 80×7×1 мм, располагали в камере параллельно подложке и нагревали до температуры 1325 - 1380°С также пропусканием тока. При напуске германа в камеру до давления $1 \cdot 10^{-6} - 4 \cdot 10^{-4}$ Тор контролируемо варьировали содержание Ge в слоях вплоть до ~ 30%.

При исследовании однородности распределения толщины слоев по площади подложки установлено, что она зависит от расстояния между источником и подложкой (L). Приемлемый разброс толщины слоев (~ 5%) на центральной части подложки размером 40×10 мм достигался при расстоянии L = 20 мм.

Методом рентгеновской дифракции было исследовано и содержание Ge в слоях $Si_{1-x}Ge_x$ и распределение его концентрации по длине подложки. Установлено, что на указанной выше площади центральной части подложки содержание Ge сохраняется постоянным в пределах ошибки его определения. Концентрация Ge в слоях $Si_{1-x}Ge_x$ остается практически неизменной и для широкого интервала толщин d $s_{i1-xGex} = 0.07 - 2.3$ мкм.

Первоначально было исследовано структурное совершенство слоев по всей площади подложки. В частности, исследовали условия возникновения термомеханических напряжений в подложке в процессе предэпитаксиального высокотемпературного (1250°C) отжига подложки и влияние их на генерацию дефектов в подложке и в эпитаксиальном слое. Методом рентгеновской топографии выявили, что периферийная часть пластины занята линиями скольжения (рис.1). Это могло быть связано с возникновением градиента температуры вдоль подложки при нагреве ее пропусканием тока, который приводит к возникновению сжимающих напряжений. Оценка их величины по формуле [4]:

$\sigma = \alpha \cdot E \cdot \Delta T$,

где α – коэффициент теплового расширения, Е – модуль Юнга, показывает, что при $\Delta T = 100^{\circ}$ К величина $\sigma = 80$ мПа. Этого достаточно для протекания пластической деформации.

Наиболее вероятными источниками генерации дефектов в подложке при ее высокотемпературном отжиге являются нарушения, имеющиеся на кромках пластины. Линии сколъжения, генерируемые в подложке в процессе ее отжига, по-видимому, являются и источниками дефектов в эпитаксиальном слое, например, дефектов упаковки. Плотность линий скольжения удавалось значительно снизить, если использовать мягкие режимы термообработки. В частности, когда температуру подложки изменяли с медленной скоростью (~50°С/мин.), то площадь слоя, занятая линиями скольжения, значительно уменьшается.

Рис.1 Рентгеновская топограмма половины кремниевой подложки после высокотемпературного отжига. Контраст обратный (×2).

нарашивании При эпитаксиальном структур для приборных измерений важно воспроизведение профиля заданного легирующей распределения концентрации примеси по площади подложки. Для этой цели выращивали кремниевую структуру p^+ - n^+ -n- n^+ -типа. На рис. 2 приведены измеренные методом С-V-профилометрии концентрационные профили переходной области между слоями n⁺- и n-типа. измеренные в разных точках структуры. Видно, что на расстоянии l = 24 мм от центра подложки они воспроизводятся достаточно хорошо.

Рис.2 Профили концентрации электронов в структуре $p^+-n^+-n-n^+$ -типа в различных точках ее поверхности.

Для анализа процесса встраивания атомов Ег в слои твердого раствора Si_{1-x}Ge_x исследовались профили распределения атомов этой примеси и основных компонентов, полученные методом масс-спектрометрии вторичных ионов (ВИМС). На рис. 3 приведен ВИМС профиль структуры Si/Si_{1-x}Ge_x:Er/Si (100), где видно, что в структуре имеет место однородное распределение атомов Ge и Er по толщине активного слоя.

Рис.3 Концентрационные ВИМС-профили легирующих примесей и основных элементов в структурах Si/Si_{1-x}Ge_x:Er/Si.

Проведенные в работе исследования позволили выяснить оптимальные режимы роста гетероструктур Si/Si_{1-x}Ge_x:Er/Si с однородным распределением толщины слоев на достаточно большой площади подложки и однородным распределением концентрации атомов Ge и Er по толщине активного слоя.

Работа выполнена при поддержке РФФИ (гранты #04-02-17120, #04-02-08240офи_а, #04-02-17046) и ИНТАС (грант #03-51-6486).

[1] С.П.Светлов, В.Ю.Чалков, В.Г.Шенгуров, Е.А.Ускова, Г.А.Максимов, Б.А.Андрееев, З.Ф.Красильник, М.В.Степихова, H.Ellmer. // Письма в ЖЭТФ, 2000, т.26, №1, с.84-89.

[2] Светлов С.П., Чалков В.Ю., Шенгуров В.Г. и др. // Изв.РАН, сер.физическая, 2004, т.68, №1, с.32.

[3] Светлов С.П., Шенгуров В.Г., Толомасов В.А., Горшенин Г.Н., Чалков В.Ю. // ПТЭ, 2001, №5, с.137 140

[4] Концевой Ю.А., Литвинов Ю.М., Фаттахов Э.А. Пластичность и прочность полупроводниковых материалов и структур, М.Радио и связь, 1982, 239 с.

Светоизлучающие свойства легированных эрбием структур кремниевых нанокристаллов в матрице диоксида кремния

О. А. Шалыгина, Д. М. Жигунов, В. Ю. Тимошенко, П. К. Кашкаров

Московский Государственный Университет им. М.В. Ломоносова,

Физический факультет, 119992 Москва

e-mail: <u>olga@vega.phys.msu.ru</u>

Интерес к исследованию люминесценции ионов эрбия Er³⁺, внедренных в матрицу на основе кремния, связан с перспективностью использования таких структур в оптоэлектронных приборах, таких как оптические усилители лазеры [1]. И ${}^{4}I_{13/2} {\longrightarrow} {}^{4}I_{15/2}$ Излучательные переходы BO Er³⁺ внутренней 4f оболочке ионов соответствуют длине волны 1.53 мкм, что совпадает с максимумом пропускания волоконно-оптических линий связи. а кремниевая основа данных структур дает возможность интегрировать светоизлучающие элементы на единой подложке с элементами полупроводниковой микроэлектроники. Среди различных кремниевых структур, использующихся в качестве матрицы для Er³ таких как кристаллический (c-Si), аморфный (а-Si) и наноструктурированный (nc-Si) кремний, последний обладает рядом преимуществ: отсутствует сильное температурное гашение эрбиевой фотолюминесценции (ФЛ) И значительно подавлены каналы безызлучательных потерь энергии [2]. Кроме того, эффективностью возбуждения ионов Er³⁺ можно управлять, изменяя размеры кремниевых нанокристаллов [3].

В данной работе исследованы фотолюминесцентные свойства легированных эрбием структур кремниевых нанокристаллов в матрице диоксида кремния (nc-Si/SiO₂:Er).

структур nc-Si/SiO₂ Образцы были получены реактивным распылением мишени SiO в вакууме или при определенном давлении О₂, при этом на подложку с-Si последовательно наносились слои SiO и SiO₂. Формирование кремниевых нанокристаллов (nc-Si) достигалось высокотемпературным отжигом [4]. В работе исследовались образцы со средним размером нанокристаллов от 1.5 до 4.5 нм. В часть образцов были имплантированы ионы Er³⁺ с дозами порядка 2·10¹⁵ см⁻², что дало среднюю концентрацию ионов $N_{\rm Er}$ порядка 10^{20} см⁻³. В тех же условиях были приготовлены однородные слои SiO₂:Er, не содержащие кремниевые нанокристаллы, которые использовались для сравнительных экспериментов.

Проведенные ранее эксперименты [3] показали, что возбуждение ФЛ ионов Er³⁺ в структурах nc-Si/SiO₂:Er осуществляется за счет эффективного переноса энергии от оптически

возбужденных экситонов в кремниевых нанокристаллах.

На рис. 1 представлены нормированные ΦЛ nc-Si/SiO2:Er спектры структур с кремниевых различными размерами d нанокристаллов. Видно, что с ростом размеров нанокристаллов происходит уширение спектра ФЛ, в то время как наименьшей шириной спектра ФЛ обладают образцы легированного эрбием однородного диоксида кремния, не содержащего кремниевых нанокристаллов. Как показано в работе [5], уширение спектра ФЛ можно объяснить дополнительным Er³⁺, расщеплением уровней вызванным электрическим полем зарядов изображения, наводимых на границе раздела слоев диоксида кремния и кремниевых нанокристаллов. Увеличение размеров nc-Si приводит к большему контрасту диэлектрической проницаемости на границе nc-Si/SiO₂, а, большей следовательно, к величине электрического поля, создаваемого зарядами изображения. В результате увеличивается величина расщепления уровней Er³⁺, и, соответственно, ширина спектра ФЛ. Следует отметить, что влияние дополнительных полей резко падает при удалении иона от границы пс-Si/SiO₂ [5].

Также были измерены кинетики ФЛ исследуемых структур при возбуждении квазинепрерывным лазером на парах меди,

Рис.1. Нормированные спектры ФЛ структур nc-Si/SiO₂:Er с размерами нанокристаллов d=1.5 нм (1), 3 нм (2), 4.5 нм (3). Кривая 4 соответствует образцу SiO₂:Er (d=0). T=300K.

прерываемого механическим образом ($\hbar\omega_1 = 2.4$ эВ, $\hbar\omega_2 = 2.1$ эВ, $\tau \sim 20$ нс, $E \leq 10$ мкДж, $\nu \sim 12$ кГц). Спад ФЛ хорошо аппроксимируется так называемой "растянутой" экспонентой:

$$I_{PL}(t) = I_0 \exp \left\{ -(t / \tau)^{\beta} \right\}$$
(1)

где τ – среднее время жизни ФЛ, β – параметр неэкспоненциальности. Зависимость типа (1) обычно наблюдается для неупорядоченных твердотельных систем, характеризующихся дисперсией значений времен рекомбинации, например, для аморфного и пористого кремния. В нашем случае дисперсия времен жизни ФЛ может быть обусловлена разной удаленностью Er³⁻ ионов от слоев кремниевых нанокристаллов. При этом ионы, близкорасположенные к nc-Si, будут испытывать более сильное влияние поля, обусловленного зарядами изображения. наводимыми на границе раздела nc-Si и SiO₂, в результате чего их собственные излучательные времена будут короче, чем у более удаленных от nc-Si ионов. Кроме того, дисперсия значений времен жизни ФЛ должна возрастать с увеличением контраста диэлектрических проницаемостей на границе nc-Si/SiO₂, т.е. с ростом среднего размера nc-Si [6].

На рис.2 показаны зависимости времен жизни τ (a) и параметра неэкспоненциальности β (б) от средних размеров nc-Si d при различных температурах (Т =10 и 300 К). Действительно, видно, что наибольшие значения τ и β характерны для однородных слоев SiO₂:Er (как при комнатной, так и при низкой температурах). Кроме того, можно видеть, что с ростом размеров nc-Si (толщины слоя) среднее время жизни ФЛ ионов Er³⁺ уменьшается в связи с возрастанием влияния лополнительных электрических полей на энергетическую структуру уровней [6]. Отметим, что существует

Рис.2. Зависимость среднего времени жизни (*a*) и параметра неэкспоненциальности (*b*) ФЛ ионов Er^{3+} в структурах nc-Si/SiO₂:Ег от размеров нанокристаллов при различных температурах. Точка *d*=0 соответствует образцу SiO₂:Ег. Линии проведены для наглядности.

другая возможная причина уменьшения τ – безызлучательное девозбуждение ионов Er^{3+} при взаимодействии их с nc-Si, т.е. процесс обратной передачи энергии. Причем, его эффективность должна возрастать как при уменьшении эффективной ширины запрещенной зоны так и с увеличением плотности состояний в нанокристаллах, т.е. с ростом размеров nc-Si.

Из рис.2 также можно видеть уменьшение параметра неэкспоненциальности β с увеличением размеров нанокристаллов, что находится в согласии с приведенными выше рассуждениями о дисперсии времен.

Наблюдаемое на рис.2 увеличение среднего времени жизни для всех исследуемых структур при понижении температуры может быть объяснено уменьшением вклада процессов безызлучательного левозбужления ионов. Кроме того, при комнатной температуре укорочение времени жизни τ с ростом d более значительно, чем при Т = 10 К. Данный факт можно объяснить тем, что в условиях подавления безызлучательных каналов релаксации энергии при низкой температуре изменение среднего времени жизни возможно только результате воздействия в дополнительных электрических полей на излучательные переходы в Er^{3+} .

Таким образом, исследованы зависимости спектров и параметров кинетики ФЛ ионов Er³⁺ в структурах nc-Si/SiO₂:Er от среднего размера nc-Si. Полученные данные объяснены влиянием дополнительного поля, создаваемого зарядами изображения, индуцированными на границе пс-Si/SiO₂, а также наличием процесса безызлучательного девозбуждения ионов. Проведенные исследования могут способствовать оптимизации структур nc-Si/SiO₂:Er при создании на ИХ основе оптических усилителей и лазеров.

[1] S. Coffa, G. Franzo, F. Priolo. MRS Bulletin, **23** (4), 25 (1998).

[2] A. Polman. "Erbium implanted thin film photonic materials". J. Appl. Phys. 82 (1), 1 (1997).
[3] V.Yu. Timoshenko, M.G. Lisachenko, B.V. Kamenev, O.A. Shalygina, P.K. Kashkarov, J. Heitmann, M. Schmidt, M. Zacharias. Appl. Phys. Lett., 84 (14), 2512 (2004).

[4] M. Zacharias, J. Heitmann, R. Shcholz, U. Kahler, M. Schmidt, J. Bläsing, Appl. Phys. Lett., **80**, 661 (2002).

[5] С. А. Тетеруков, М. Г. Лисаченко,
О. А. Шалыгина, Д. М. Жигунов,
В. Ю. Тимошенко, П. К. Кашкаров. ФТТ, 47 (1),
102 (2005).

[6] C. Delerue, M. Lannoo, G. Allan, Phys. Rev. B **68**, 115411 (2003).

Структура и излучательные свойства дислокаций, возникающих при росте кислородных преципитатов в кремнии.

<u>Э.А.Штейнман¹</u>, А.Н.Терещенко¹, В.Я.Резник²

¹Институт физики твердого тела РАН, Черноголовка, e-mail: <u>steinman@issp.ac.ru</u>

²ГИРЕДМЕТ, Б. Толмачевский пер., Москва, 109017 Россия

Успешное применение дислокационной люминесценции (ДЛ) для создания светоизлучаюших структур [1] ставит задачу нахождения технологичного способа введения дислокаций. Действительно, введение дислокаций с помощью пластической деформации оправдано в исследовательской работе, но не может быть использовано в промышленности. Одним из альтернативных способов генерации дислокаций является их введение при росте кислородных преципитатов. В некотором смысле, этот способ обладает рядом преимуществ, важнейшим из которых является происходящий при этом процесс внутреннего геттерирования. Именно благодаря процедуре геттерирования был достигнут рекордный внешний квантовый выход ДЛ (~0.1%) в работе [1]. Очевидно, что морфология дислокационной концентрация преципитатов структуры, И излучательные свойства дислокаций определяются конкретными параметрами термической обработки, включая зарождение, стабилизацию и рост преципитатов. Настоящая работа посвящена исследованию связи структуры и излучательных свойств дислокаций, возникающих в процессе роста преципитатов. В работе исследовались образцы Cz Si с содержанием межузельного кислорода [O_i] 6- $10*10^{17}$ cm⁻³. Измерение фотолюминесценции (ФЛ) производилось по стандартной фазочувствительной методике с охлаждаемым германиевым фотосопротивлением в качестве детектора. ФЛ возбуждалась фотонами С λ=920нм при мощности возбуждения 1Bт/см².

Рис.1. Спектры ФЛ образца Cz Si после изохронного отжига при температурах, указанных на рисунке.

На Рис.1 показаны спектры ФЛ образца кремния после последовательного изохронного отжига при 450°С, 560°С и 950°С 20час. Первые два отжига дают зарождение и стабилизацию преципитатов, а третий – рост преципитатов. Видно, что в результате отжига при 950°С происходит возникновение и резкое увеличение Рис.2 показано промежуточное ДЛ. Ha изменение ДЛ в процессе роста преципитатов при 950°С после предварительного отжига при 450°С и 560°С. После 1часа отжига только слабая линия Д2 появляется в спектре.

Рис.2. Изменение ДЛ при росте преципитатов кислорода в результате последовательного увеличения времени отжига при 950°С после предварительного отжига 20час.-450°С и 20час. -560°С.

Последующий отжиг приводит к постепенному усилению полосы Д1, которая обгоняет по интенсивности линию Д2. Такое перераспределение спектральной интенсивности наблюдалось ранее при увеличении плотности дислокаций [2], что объяснялось увеличением вероятности генерации центров, ответственных

Рис.3. Типичный кислородный преципитат с дислокационными петлями возникающий после 20час при 950°С. Локальная плотность дислокаций составляет приблизительно 10¹²см⁻².

за линию Д1 при взаимодействии дислокаций. Действительно, рост отдельного преципитата приводить должен к последовательному испусканию дислокационных петель за счет несоответствия объема новой фазы и решеткой кремния И, соответственно, увеличению локальной плотности дислокаций. На Рис.3 показан типичный пример преципитата в образце после отжига при 950°С 20 час. Оценка локальной плотности дает величину порядка 10¹²см⁻². При среднем размере преципитатов 200нм и плотности в интервале $10^8 - 10^{10}$ см⁻³ это соответствует средней плотности дислокаций 105 - 10⁷см⁻². Таким образом, при меньшей средней плотности дислокаций достигается спектральное распределение интенсивности, соответствующее большой плотности деформационно введенных

Рис.4. Спектры ФЛ образцов Сz Si для разного времени роста преципитатов при 1000°С. Предварительная термообработка состояла из отжига при 1000°С 15 мин., зарождения преципитатов при 650°С 32 часа и стабилизации при 800°С 4 часа.

дислокаций [3].

Рассмотрим ДЛ изменение при Рис.4 постепенном росте преципитатов. иллюстрирует спектры ДЛ для образцов с начальным содержанием $[O_i] 6*10^{17} \text{ см}^{-3}$ с разным временем роста преципитатов при 1000°С. что спектральное распределение Видно, интенсивности сильно меняется на последней стадии отжига, приближаясь к распределению, получаемому после пластической деформации образцов при высокой температуре. Исследование дефектной структуры этих образцов методом просвечивающей электронной микроскопии (ПЭМ) показало, что концентрация и морфология дефектов меняется на каждой стадии отжига. Наблюдаемые дефекты были условно разделены на несколько типов, основными из которых являются плоские преципитаты (ПП), конгломераты преципитатов с дислокационными петлями (ДК), дефекты vпаковки внедрения (ДУ) И отдельные дислокационные петли (ДП). Последние, предположительно, тоже возникли из преципитатов, но ушли от них на расстояние, превышающее толщину фольги. Сравнение спектров ДЛ и концентрации различных типов лефектов не выявило корреляции межлу конкретными типами дефектов И интенсивностью ДЛ. то же В время удовлетворительная корреляция наблюдалась между общей концентрацией дефектов и интегральной интенсивностью ДЛ (Рис.5). Аналогичная зависимость была обнаружена при

Рис.5. Зависимость интегральной интенсивности ДЛ и плотности дефектов от времени зарождения преципитатов при 650°С времени отжига при 1000°С.

фиксированном времени роста преципитатов при 1000°С от времени зарождения дефектов при 650°С (Рис.5). Нужно отметить, что на начальных стадиях образования преципитатов спектры ДЛ напоминают спектры, полученные на деформированных образцах Cz Si после геттерирования кислорода дислокациями [4] Кроме того, в Cz Si при малой плотности дислокаций, введенных пластической деформацией длинноволновая часть спектра ДЛ, обычно состоит из двух широких полос [5].

Полученные данные позволяют оптимизировать процесс генерации центров, ответственных за полосу Д1. Вместе с тем эти данные наглядно показывают существование процесса постепенной трансформации центров Д1, связанного с геттерированием кислорода.

Работа выполнена при поддержке грантов РАН «Новые материалы» и «Влияние атомнокристаллической и электронной структуры на свойства конденсированных сред».

[1] V. Kveder, M. Badylevich, W.Schröter, M. Seibt, E. Steinman, A. Izotov, Phys.St.Sol. (a) 202, No5, 901-910 (2005).

[2] E.A.Steinman, V.I.Vdovin, T.G.Yugova, V.S.Avrutin, and N.F.Izyumskaya, Semicond.Sci.Technol. **14** no 6 pp582-586 (1999).

[3] E.A.Steinman, V.V.Kveder, V.I.Vdovin, and H.G.Grimmeiss, Solid State Phenomena, vols.69-70, p.23 (1999)

[4] E.A.Steinman, Phys.St.Sol. (c) 2, No 6, 1837 (2005)

[5] M. Acciarri, S. Binetti, O.V.Feklisova, E.A.Steinman and E.B.Yakimov: Solid State Phenomena 95-96 p.453 (2004)

Гигантские оптические гармоники и локальные плазмоны в серебряных наночастицах

О.А. Акципетров, С.С. Еловиков, Е.М. Ким, Т.В. Мурзина

Физический факультет МГУ им. М.В. Ломоносова, Москва, Россия; e-mail: aktsip@mail.ru

Экспериментально обнаружена генерация гигантской третьей оптической гармоники (ТГ) в островковых пленках серебра. Интенсивность ТГ в островковых пленках серебра возрастает более чем на два порядка по сравнению с интенсивностью ТГ от гладкой поверхности однородной пленки серебра. Механизм усиления кубичного нелинейного отклика связан с резонансным усилением фактора локального оптического поля на длине волны ТГ вследствие возбуждения локальных поверхностных плазмонов в ансамбле наночастиц металла.

Генерация гигантской второй гармонике **(**BΓ**)** островковых пленках серебра в наблюдалась Вокауном и др. [1]. В работе [1] было обнаружено усиление интенсивности ВГ на три порядка в островковых пленках серебра по сравнению с интенсивностью ВГ от гладкой поверхности серебра. Механизм усиление был интерпретирован как резонансное усиление локального поля (на длине волны накачки или ВГ), вызванное возбуждением локальных поверхностных плазмонов в наночастицах серебра. Экспериментальные исследования плазмонного механизма усиления ГКР и ВГ были выполнены для шероховатой поверхности серебряного электрода в электрохимической ячейке [2] и на шероховатых поверхностях других металлов [3].

По аналогии с гигантской ВГ в островковых пленках серебра можно ожидать наблюдения гигантской ТГ с усилением по механизму возбуждения резонансного локальных поверхностных плазмонов. Интерес к генерации гигантской ТГ связан ещё и с тем, что в этом процессе участвует нелинейная восприимчивость третьего порядка, локализованная в объеме наночастицы, в отличие от квадратичной восприимчивости. локализованной в поверхностном слое частицы. Тем самым, процессы генерации ВГ и ТГ несут разную взаимодополняющую информацию oб электронных свойствах наночастиц.

В данной работе приведены результаты экспериментального наблюдения гигантской ТГ в островковых пленках серебра. Нелинейнооптическая спектроскопия ТГ островковых пленок, нанесенных на кремневую подложку с переменным и контролируемым расстоянием между поверхностью кремния и серебряными наночастицами, позволила установить плазмонный механизм усиления.

Островковые пленки серебра приготовлялись при термическом напылении металла на подложку кремния Si(001) в вакууме с остаточным давлением 10⁻⁵ Торр. Кремниевые пластины были выбрана в качестве подложек изгладкости за высокой И олнородности поверхности. Для обнаружения гигантской ТГ были получены два типа пленок серебра: образцы островковой структурой с эффективной с массовой толщиной в 1 нм и толстые однородные пленки с толщиной порядка 40 нм, что превосходит толщину скин-слоя в серебре. Выбор массовой толщины пленки важен для наблюдения гигантской ТГ, поскольку этим параметром морфология островковой определяется структуры: размер наночастиц и их поверхностная плотность, и, как следствие, резонансная частота локальных плазмонов.

Нелинейно-оптические эксперименты по исследованию усиления интенсивности ТГ и измерению индикатрис рассеяния диффузной ТГ проводились с использованием излучения YAG:Nd³⁺ лазера с длиной волны 1064 нм, импульсной плотностью мощности 10 MBт/см², длительностью импульса 15 нс и частотой повторения импульсов 25 Гц. Нелинейнооптическая спектроскопия гигантской TΓ проводилась с использованием излучения параметрического генератора света "Spectra-Physics MOPO 710", перестраиваемого в диапазоне 490 — 670 нм, с длительностью импульса 4 нс и энергией в импульсе около 10 возбуждаемого излучением третьей мДж, гармоники YAG:Nd³⁺ лазера. Часть излучения накачки отводилась в канал сравнения, который позволял нормировать величину интенсивности ТГ и ВГ от островковых пленок на величину аналогичного сигнала от кристалла кварца, и таким образом уменьшать влияние флуктуаций мощности излучения накачки. Интенсивность излучения на ТГ и ВГ детектировалось с помощью фотоэлектронного умножителя и стробируемой системы регистрации, проходя через соответствующие ультрафиолетовые или сине-зеленые фильтры.

Для наблюдения и количественной оценки измерения усиления гигантской ТΓ интенсивности ТГ проводились для трех типов образцов, приготовленных на кремниевой подложке с постоянной толщиной оксида порядка 100 нм. На рис. 1 показана азимутальная для: зависимость интенсивности ТΓ (1)островковой пленки серебра с эффективной массовой толщиной порядка 1 нм; (2) эталонной толстой однородной пленки серебра и (3) поверхности Si(001) без напыления. Все измерения выполнены для s-s комбинации поляризаций фундаментальной волны и волны TГ, соответственно.

Рис. 1. Зависимости интенсивности ТГ от азимутального угла для чистой поверхности Si(001) (открытые треугольники), для островковой пленки серебра (закрытые точки) и толстой эталонной пленки серебра (открытые прямоугольники), сплошные линии аппроксимация выражением (3).

Из сравнения изотропных и анизотропных вкладов в интенсивность ТГ для разных типов пленок серебра на рис. 1, можно сделать вывод, что, с одной стороны, наличие островковой пленки существенно увеличивает полную изотропную компоненту ТГ за счет изотропного некогерентного вклада серебряных наночастиц а, с другой стороны, уменьшает анизотропную компоненту полного сигнала ТГ.

Последнее связано с поглощением в островковой пленке излучения накачки, и излучения ТГ, регистрируемого от кремниевой подложки, что уменьшает величину И анизотропного сигнала. оценки Для коэффициента усиления гигантской ΤГ необходимо измерение диффузной компоненты ТГ для получения интегральной по полярному углу интенсивности TГ. Инликатриса ГРР на длине волны ТГ для островковой пленки серебра приведена на вставке к рис. 2. Все это позволяет оценить коэффициент усиления ТГ, который оказался равен $G(3\omega)=1.4\cdot 10^2$.

исследования роли Для резонанса локальных плазмонов в механизме усиления гигантской ТГ были исследованы спектры ТГ для идентичных островковых пленок серебра, напыленных на поверхность ступенчатого оксидного клина. На основной панели рис. 2 показаны спектры интенсивности гигантской ТГ для трех значений толщины оксидного слоя на поверхности кремния. Также как и в спектроскопии ВГ явно виден сдвиг по частоте резонанса интенсивности ТГ в сторону коротких длин волн и возрастание амплитуды резонанса при увеличением расстояния между частицами серебра и кремниевой подложкой. Такое поведение резонансов интенсивности TT показывает роль действительной и мнимой частей диэлектрической проницаемости кремниевой подложки в поведении резонансной частоты локальных плазмонов подтверждает И плазмонный механизм усиления гигантской ТГ.

Рис. 2. Спектры интенсивности ТГ для различных толщин оксидного слоя на ступенчатом клине для островковой пленкой серебра: при d=100нм (открытые точки), d=70нм (закрытые точки), d=0 (естественный оксид) (открытые прямоугольники), сплошные линии аппроксимация экспериментальных спектральных зависимостей функцией Гаусса; вставка – индикатриса ГРР на длине волны ТГ для островковой пленки серебра (закрашенные точки), угловая аппаратная функция системы измерения индикатрис (открытые точки).

В заключении суммируем результаты работы: наблюдалась генерация гигантской ТГ в двумерном ансамбле наночастиц серебра с коэффициентом усиления $1.4 \cdot 10^2$ по сравнению с интенсивностью ТГ от однородной серебряной пленки. Исследованием резонансных спектров интенсивности ТГ в структуре с переменным наночастицами расстоянием между и полупроводниковой подложкой показано, что механизм усиления гигантской ТГ связан с усилением локальных оптических полей при возбуждении структуре серебряных в наночастицах локальных поверхностных плазмонов.

Работа выполнена при поддержке Российского фонда фундаментальных исследований (гранты 04-02-16847, 04-02-17059,), Президентского гранта "Ведущие научные школы России" НШ 1604.2003.2.

[1] A. Wokaun, J.G. Bergman, J.P.Heritage, A.M. Glass, P.F. Liao and D.H. Olson, Phys. Rev. B. 24, 849 (1981).

[2] C.K. Chen, A.R.B. de Castro, Y.R. Shen, Phys. Rev. Lett. 46, 145 (1981).

[3] G.T. Boyd, Th. Rasing, J.R.R. Leite, and Y.R. Shen, Phys. Rev. B. **30**, 519 (1984).

Принцип каскадного лазера на примесных состояниях в селективно легированных сверхрешетках

<u>H.A. Бекин¹</u>, В.Н. Шастин¹

¹ Институт физики микроструктур РАН, ГСП-105, Нижний Новгород, Россия e-mail: nbekin@ipm.sci-nnov.ru

Анализируется возможность созлания переходах лазера на оптических между резонансными состояниями кулоновских легированных центров в селективно туннельно-связанными сверхрешетках с квантовыми ямами. Механизм формирования инверсной населенности основан на возможности управления временами жизни примесных состояний в условиях сильной (резонансной) гибридизации подзон размерного квантования. Такая гибридизация возникает, когда уровень резонансного состояния примеси, сформированного одной из возбужденных подзон, приближается минимуму к нижележащей соседней подзоны (рис. 1). В этом случае, обе указанные подзоны вносят существенный вклад в волновую функцию примесного состояния, причем их относительный вклад сильно зависит OT расстояния между уровнем резонансного состояния и минимумом нижней подзоны. Это время позволяет регулировать жизни резонансного состояния, изменяя расстояние приложении между подзонами при электрического поля.

Расчеты энергетического спектра И волновых функций были проведены в приближении изолированного донорного центра методом разложения по волновым функциям электрона в туннельно-связанных квантовых ямах [1]. На данном этапе исследований была рассмотрена только активная часть периода сверхрешетки, а слои, отвечающие за транспорт электронов между активными слоями были исключены. В качестве активных слоев были рассмотрены две слабо связанные квантовые ямы GaAs толщиной 5 и 16 нм, разделенных барьером Al_{0.3}Ga_{0.7}As толщиной 4 нм. Предполагалось, что все три слоя были заключены между барьерами Al_{0.3}Ga_{0.7}As, δ-слой легирования располагался в центре узкой квантовой ямы. Волновые функции первых двух подзон локализованы в основном в широкой квантовой яме, а третьей подзоны – в узкой яме. Расстояние между 2-й и 3-й подзоной (16 мэВ) сравнимо с «энергией связи» нижнего резонансного состояния под 3-й подзоной, что обуславливает сильную гибридизацию этих подзон. Поскольку волновые функции 2-й и 3-й подзон локализованы в различных ямах, это позволяет в широких пределах регулировать локализацию волновой функции резонансного состояния примеси с помощью изменения расстояния между подзонами. Тем самым изменение перекрытия волновой функции примесного состояния с волновой функцией 1-й подзоны регулирует время спонтанного испускания LO фонона.

В слабо связанных квантовых ямах влияние электрического поля на спектр можно с хорошей точностью смоделировать введением дополнительного кусочно-непрерывного

Рис. 1 Эскиз лазера на примесных состояниях в δ-легированной сверхрешетке. Черным кружком отмечено положение δ-слоя. Изображены квадраты модуля волновых функций подзон в активной части периода.

потенциала, который сдвигал бы положение квантовых ям друг относительно друга в соответствии с падением напряжения на слоях. Если обозначить координаты границ узкой и широкой квантовых ям, соответственно, как z₁, z₂, z₃ и z₄ (в порядке возрастания), то дополнительный потенциал можно записать как $V(z) = U(\theta(z_2 - z) - \theta(z - z_3))/2$, где U > 0 – константа, а $\theta(z)$ - единичная ступенчатая функция. Будем учитывать вклад в волновую функцию примесного состояния первых трех нижних подзон. При U = 0 2-я и 3-я подзоны максимально сближены, а нижнее резонансное состояние, относящееся к 3-й подзоне, всего на 3 мэВ выше минимума 2-й подзоны. Волновая функция этого резонансного состояния содержит при этом максимальный вклад 2-й подзоны (доли 1-й, 2-й и 3-й подзон составляют 0.3%, 85% и 14.7%, соответственно), что определяет его время жизни из-за короткое быстрого испускания LO фонона (рис. 2). Сильное электрон-фононное взаимодействие обусловлено в этом случае хорошим перекрытием волновых функций резонансного состояния и 1-й подзоны. С ростом U минимум 3-й подзоны вместе с относящимися к ней резонансными состояниями поднимается относительно минимумов 2-й и 1-й подзон. Одновременно растет вклад 3-й подзоны вклад 2-й и уменьшается подзоны В формирование волновых функций резонансных состояний, а, следовательно, уменьшается их перекрытие с волновой функцией 1-й подзоны и снижается вероятность испускания LO фононов. Важно, что вклад 2-й подзоны в формирование нижнего резонансного состояния существенно больше, чем для возбужденных состояний, для которых определяющим является вклад 3-й подзоны. Это приводит к тому, что время жизни нижнего резонансного состояния всегда меньше, чем для возбужденных состояний, также как и состояний 3-й подзоны, поэтому в возможной схеме каскадного лазера оно может быть выбрано в качестве нижнего рабочего состояния. Верхним рабочим состоянием может являться одно из возбужденных резонансных состояний. Можно ожидать, что более благоприятной окажется схема на примесно-зонных оптических когда верхними рабочими переходах, состояниями будут состояния 3-й подзоны вблизи ее минимума.

Пространственное разнесение по функций рабочих координате z волновых состояний благоприятно сказывается на соотношении их времен жизни, но при этом подавляется дипольный матричный элемент оптического перехода для излучения Zполяризации. Однако, специфика излучательных переходов между состояниями кулоновских центров заключается в том, что кроме традиционной z-поляризации для межподзонных оптических переходов в квантовых ямах в гетероструктурах п-типа, становится возможной поляризация с электрическим полем волны, ориентированным вдоль квантовых слоев. Для энергий фотонов сравнимых с энергией связи состояний именно примесных такая «латеральная» поляризация оказывается доминирующей. Вероятность таких оптических переходов можно характеризовать матричными элементами оператора r_{\pm} , отвечающего за взаимодействие с циркулярно поляризованным излучением [1]. На рис. 2 показана зависимость матричного элемента r₊ между нижними резонансными состояниями под 3-й подзоной с проекциями момента m = 0 и $m = \pm 1$ от U. C ростом U матричный элемент излучательного перехода растет. Это объясняется тем, что оптические переходы циркулярно для поляризованного излучения носят внутриподзонный характер, т.е., в данном вероятность случае, переходов между резонансными состояниями определяется вкладами 3-й подзоны в волновую функцию начальных и конечных состояний. Вклад этой подзоны в состояния с $m = \pm 1$ близок к единице для всех U в рассмотренном интервале, поэтому матричный элемент пропорционален ее вкладу в нижнее состояние с m = 0, который растет с увеличением U.

Таким образом, начиная с некоторого смещения U, матричный элемент рабочего оптического перехода становится сравнимым с величиной, характерной для переходов между

Рис. 2 Вероятности испускания LO фононов (левая шкала) и модуль матричного элемента $r_{fi} = \left| \left\langle m = \pm 1 \mid r_{\pm} \mid m = 0 \right\rangle \right|$ оптического перехода между нижними резонансными состояниями с m = 0 и $m = \pm 1$ (правая шкала). Пунктиром и сплошными линиями показаны вероятности фононов минимумов, испускания для соответственно, 2-й и 3-й подзон. Сплошными и полыми кружками изображены вероятности фононов, соответственно, испускания для возбужденного нижнего И резонансных состояний с m = 0, квадратами – для нижних резонансных состояний с $m = \pm 1$.

локализованными состояниями донора в квантовых ямах толщиной 5 нм, как узкая яма в рассмотренной гетероструктуре ($\left|\left\langle f | r_{\pm} | i \right\rangle\right| \sim 3$ нм, а для примесно-зонных переходов ~0.2 нм). В то же время соотношение времен жизни рабочих состояний является вполне благоприятным во всем рассмотренном интервале U. Оценка для ожидаемого коэффициента усиления в схеме на примесно-зонных оптических переходах дает величину порядка 100 см⁻¹ на активный слой при концентрации 10¹¹ см⁻² без учета потерь. Добавим, что транспорт электронов между сверхрешетки активными слоями можно осуществлять по переходному слою, который содержит одну или несколько квантовых ям, аналогично каскадным лазерам [2].

Работа выполнена при финансовой поддержке РФФИ (гранты № 03-02-16775, № 06-02-16136).

- [1] Бекин, Н.А., ФТП **39**, 463 (2005).
- [2] Williams, B., Callebaut, H., Kumar, S., Hu, Q.,
- and Reno, J., Appl. Phys. Lett. 82, 1015 (2003).

Тонкая структура энергетического спектра носителей в кремниевых квантовых точках с мелкими донорами

В.А. Беляков, В.А. Бурдов

Нижегородский государственный университет им. Н.И. Лобачевского, 603950, пр. Гагарина 23,

Нижний Новгород, Россия

e-mail: dragon_bel@mail.ru

За последние полтора десятилетия было выполнено множество как теоретических, так и экспериментальных работ, посвящённых расчёту различными методами (кр-метод [1], метод сильной связи [2], метод псевдопотенциала [3], метод функционала локальной плотности [4]) энергетических спектров носителей и измерению люминесценции кремниевых спектров квантовых точек (см., например, [5-8]). Существенно меньшее внимание было уделено возможной модификации исследованию оптических свойств кремниевых нанокристаллов введением в них мелких примесей. В небольшом количестве экспериментальных работ [9-11], в частности, обращалось внимание на эффект увеличения интенсивности фотолюминесценции при легировании системы донорной примесью фосфором.

Теоретический же анализ проблемы практически полностью отсутствует. Первый вопрос, который возникает при исследовании оптических свойств кремниевых квантовых точек с мелкой примесью – это вопрос об энергиях электронов и дырок и структуре основного состояния для обоих типов носителей в присутствии донора. Ответ на этот вопрос и будет являться целью нашей работы.

рассматривать сферическую Будем квантовую точку радиуса *R* с находящимся внутри неё донором. Радиус-вектор донора обозначим через **h** и положим, что $h/R \ll 1$, т.е. донор находится близко к центру нанокристалла. Сам нанокристалл будем считать достаточно малым - с характерным размером в несколько нанометров. Условие h/R << 1 позволит нам в лальнейшем рассматривать ассиметричную относительно центра квантовой точки часть кулоновского потенциала электрон-ионнного взаимодействия как малое возмущение. Положим также потенциальные барьеры на границе квантовой точки бесконечно высокими, а диэлектрические проницаемости внутри и вне нанокристалла равными \mathcal{E}_{S} И \mathcal{E}_d , соответственно.

В отсутствие примеси, поляризационных эффектов и учёта спин-орбитального взаимодействия в валентной зоне задача определения спектра носителей в кремниевой квантовой точке была решена в [1] в рамках приближения огибающей. Как показали расчеты, и в зоне проводимости, и в валентной зоне для

нахождения уровней, задающих саму оптическую щель нанокристалла и нескольких последующих, в присутствии примеси и спинорбитального расщепления достаточно будет сохранить по два нижних (верхних) уровня нулевого приближения в каждой из зон. При этом оба уровня в валентной зоне вырождены шестикратно, а в зоне проводимости каждый из уровней имеет двенадцатикратное вырождение с учётом спина. Полагая потенциал примесного иона плавной функцией координат, придём к кргамильтониану, который будет диагонален по потенциалу примеси.

Результаты вычисления энергий в зоне проводимости и в валентной зоне представлены на рисунках 1 и 2 соответственно.

Рис. 1 Относительное расщепление уровня энергии основного состояния в зоне имеющего проводимости, 12-тикратное вырождение, на шесть двукратно вырожденных. Отсчёт энергии ведётся от верхнего уровня, полученного в результате расщепления. $h_{\rm x}/R=0.016$, $h_{v}/R=0.01$, $h_{z}/R=0.007.$

Как видно из рис.1, поле примеси расщепляет основной электронный уровень, оставляя лишь двукратное вырождение каждого из вновь полученных уровней по спину. При этом следует отметить, что основное состояние (имеется в виду структура огибающей функции) являлось суперпозицией состояний s и р типа, с заметным (примерно четырёхкратным) преобладанием доли s-состояния. Появление существенному примеси не привело к изменению в структуре основного состояния. Оно, как и прежде, оказалось суперпозицией s- и р-состояний, причём доля s-состояния незначительно возросла.

Вырождение уровней в валентной зоне значительной также, в мере, снимается, оставаясь, как и в зоне проводимости, двукратным (см. рис.2). Существенно, однако, что в отсутствие примеси основное состояние в валентной зоне имело огибающую s-типа, а после введения примесного иона огибающая уже описывает р-состояние. Смена типа огибающей, очевидно, может существенно сказаться на временах и интенсивности излучательной межзонной рекомбинации в квантовой точке. В основной частности. переход теперь соответствует s-р рекомбинации, и будет, очевидно, подавлен. Амплитуда s-s перехода

Рис. 2 Относительное расщепление двух верхних дырочных шеститикратно вырожденных уровней на шесть двукратно вырожденных. Отсчёт энергии ведётся от верхнего уровня, полученного в результате расщепления. $h_x/R=0.016$, $h_y/R=0.01$, $h_z/R=0.007$.

будет гораздо большей, однако такой переход также подавляется, но уже статистически. Заселённость s-уровня в условиях существования квазиравновесного распределения по энергиям превышает, конечно же, заселённость более высоко лежащего p-уровня. В итоге, вероятность рекомбинации в результате введения в квантовую точку одного примесного атома должна уменьшиться.

Подчеркнём заключение, что в образовавшаяся тонкая структура уровней энергетических обязана своим появлением не самому факту наличия примеси в точке, а непосредственно квантовой eë ассиметричному расположению в нанокристалле, нарушающему инверсионную симметрию задачи. В частности, если примесный ион будет находиться строго в центре сферы радиуса R, то исходное вырождение в зоне проводимости вообще не снимается, а в валентной зоне вырождение будет снято в той мере, в которой это позволяет сделать спин-орбитальное взаимодействие. Это означает, что каждый из двух невозмущённых уровней будет расщеплён на два – двух- и четырёхкратный. Напротив, смена s-типа на p-тип огибающей основного дырочного состояния почти не чувствительна к положению примесного иона, В случае его строго центросимметричного расположения, данный эффект всё равно имеет место.

Работа выполнена при поддержке Министерства образования и науки России (проект РНП 2.1.1.2363) и РФФИ (проекты 04-02-16493 и 05-02-16762).

- [1] В.А. Бурдов, ЖЭТФ 121, 480 (2002).
- [2] Y. M. Niquet, C. Delerue, G. Allan, and M.
- Lannoo, Phys. Rev. B62, 5109 (2000).
- [3] A. Franceschetti and A. Zunger, Phys. Rev. B62, 2614 (2000).
- [4] B. Delley and E. F. Steigmeier, Appl. Phys. Lett. 67, 2370 (1995).
- [5] T. van Buuren, L.N. Dinh, L.L. Chase *et al.*, Phys. Rev. Lett. **80**, 3803 (1998).
- [6] S. Guha, B. Quadri, R.G. Musket, *et al.*, J. Appl. Phys. **88**, 3954 (2000).

[7] Kanemitsu Y., Shimizu N., Komoda T. *et al.*, Phys. Rev. B54, 14329 (1996).

[8] S. Takeoka, M. Fujii, S. Hayashi, Phys. Rev. B62, 16820 (2000).

[9] D. I. Tetelbaum, S. A. Trushin, V. A. Burdov, A. *et al.*, Nucl. Instr. Meth. B**174**, 123 (2001).

[10] M. Fujii, A. Mimura, S. Hayashi and K. Yamamoto, Appl. Phys. Lett. **75**, 184 (1999).

[11] A. Mimura, M. Fujii, S. Hayashi *et al.*, Phys. Rev. B**62**, 12625 (2000).
Полупроводниковый лазер с металлической дифракционной решеткой

<u>А. А. Бирюков¹</u>, С. М. Некоркин¹, Б. Н. Звонков¹, В. Я. Алёшкин², А. А. Дубинов², А.А.Белянин³, В.В.Кочаровский^{3,4}, Вл. В. Кочаровский⁴

¹Научно-исследовательский физико-технический институт ННГУ, Нижний Новгород ²Институт физики микроструктур РАН, Нижний Новгород

³Институт квантовых исследований и физический факультет Техасского Т&M университета, США

⁴Институт прикладной физики РАН, Нижний Новгород e-mail: biryukov@nifti.unn.ru

Перспективной возможностью получения излучения среднего и дальнего ИК диапазонов является нелинейная генерация разностной частоты в активной области резонатора полупроводникового лазерного диода, создающего две спектральные линии излучения в ближнем ИК диапазоне [1]. Осуществление эффективной генерации поля разностной частоты предполагает присутствие двух коротковолновых мод в резонаторе и обеспечение фазового синхронизма волны биений этих мод с излучаемой волной разностной частоты. Последнее, следуя [2-4], можно достичь путем использования металлической дифракционной решетки, нанесенной на верхнюю часть волноводной структуры. В настоящей работе реализован диодный лазер такой конструкции.

В обычной конструкции лазера верхняя часть волновода через контакт соприкасается с теплоотводом, что неприемлемо для вывода излучения разностной частоты, поскольку его выход происходит через дифракционную решетку. Для преодоления этой трудности была разработана и изготовлена конструкция, в которой часть лазерного чипа с нанесенной дифракционной решеткой выступала за теплоотвод, как это изображено на рисунке 1.

Лазерная структура InGaP/GaAs/InGaAs была выращена с использованием МОСгидридной эпитаксии при атмосферном давлении методом, изложенным в [5]. Дифракционная решетка была изготовлена с помощью вакуумного напыления золота и фотолитографии и имела период 8 мкм; ширина металлических полос составляла 5 мкм. Ширина полоска инжекционной накачки равнялась 100 мкм, а его длина (L) в разных диодах изменялась от 1,5 мм до 3 мм. Длина выступа (а) изменялась от 0,5 мм до 1 мм, так что отношение a/L=1/3.

Рис.1 Предложенная и реализованная конструкция полупроводникового лазера.

Выступающая часть структуры не имеет специального контакта и активная область в ней обеспечивается током только через контактный слой. Это обстоятельство немного увеличивает плотность порогового тока лазера (см. ниже) по сравнению с лазером обычной конструкции на той же структуре. Лазер генерировал излучение с длиной волны 0,98 мкм в непрерывном режиме при комнатной температуре и имел вполне обычные ватт-амперные характеристики.

На рисунке 2 представлена микрофотография свечения поверхности решетки во время генерации лазера. Из рисунка хорошо виден выход излучения, рассеянного на неоднородно-

стях волновода, через полосы, не закрытые металлом.

Рис. 2 Микрофотография свечения поверхности решетки в режиме генерации лазера.

При удалении выступающей за теплоотвод части лазера с нанесенной на него решеткой пороговая плотность тока уменьшалась примерно на 15%. Это означает, что данная часть лазера не приводит к существенному росту пороговой плотности тока. Однако следует обратить внимание на то обстоятельство, что плохой теплоотвод от части лазера с решеткой может привести к перегреву этой части лазера.

В дальнейшем для обеспечения генерации двух мод в волноводе такого лазера предполагается использовать конструкцию с составным резонатором [6], для которой двухчастотная генерация и нелинейное внутрирезонаторное смешение мод нами уже получены.

Таким образом, в данной работе реализован инжекционный лазерный диод с дифракционной металлической решеткой, предназначенной для создания излучения разностной частоты.

Работа была выполнена при поддержке CRDF (грант #RUE1-2657-NN-05), РФФИ (грант 04-02-17432), AFOSR, NSF, the Research Corporation, Министерства Образования РФ (BRHE, REC–NN–001 grant #Y1-P-01-06), NATO (SfP-973799 Semiconductors), программы Президиума РАН «Излучение терагерцового диапазона», программы Отделения физических наук РАН «Когерентное оптическое излучение полупроводниковых соединений и структур», Совета по поддержке ведущих научных школ Российской Федерации (грант 1744.2003.2).

[1] Белянин, А.А., Деппе, Д., Кочаровский, В.В., Кочаровский, Вл.В., Пестов, Д.С., Скалли, М.О. УФН **173**, 1015 (2003).

[2] Afonenko, A.A., Aleshkin, V.Ya., Dubinov, A.A. Semicond. Sci. Technol. 20, 357 (2005).

[3] Kocharovsky, Vl.V., Belyanin, A.A., Kocharovsky, V.V., Scully, M.O. Conference program of the International Conference on Laser Applications and Technology (LAT2005, St.Petersburg, May 11 – 15, 2005). – St.Petersburg, 40 (2005).

[4] Белянин, А.А., Кочаровский, В.В., Кочаровский, Вл.В., Скалли, М.О. Тезисы докладов VII Российской конференции по физике полупроводников (Полупроводники2005, Звенигород, 18 – 23 сентября 2005 г.). – Москва, ФИ РАН, 103 (2005).

[5] Zvonkov, B.N., Zvonkov, N.B., Malkina, I.G., Maximov, G.A., Avrutsky, I.A., Vasil'ev, A.V., Dianov, E.M., Prokhorov, A.M. Soviet Lightwave Commun. **3**, 71 (1993).

[6] Biryukov, A.A., Aleshkin, V.Ya., Nekorkin, S.M., Kocharovsky, V.V., Kocharovsky, Vl.V., Zvonkov, B.N., Scully, M.O. Journal of Modern Optics **52**, 2323 (2005).

Влияние поляризационных полей на ширину оптической щели кремниевых нанокристаллов

В.А. Бурдов

Нижегородский государственный университет им. Н.И. Лобачевского, 603950, пр. Гагарина 23, Нижний Новгород, Россия e-mail: burdov@phys.unn.ru

Как известно, существенную роль в электронных И формировании лырочных квантовых состояний в полупроводниковых структурах пониженной размерности играют так называемые поляризационные поля, т.е. поля, которые наводятся поляризованными зарядами на границе раздела двух сред с разными диэлектрическими проницаемостями. Так, в работе [1] был теоретически предсказан эффект диэлектрического усиления для экситонов в квантовых нитях, состоящий в увеличении энергии связи экситона за счет поляризационных полей. В [2] было высказано предположение об усилении данного эффекта в квантовых точках за счет понижения размерности объекта. Целью данной работы является расчет величины оптической щели в кремниевой квантовой точке с донорным ионом с учетом как прямого кулоновского взаимодействия носителей с ионом и между собой, так и с полями изображений (поляризационными полями) всех типов.

Рассматривается кремниевая сферическая квантовая точка радиуса *R*, внедренная в матрицу SiO₂, с донором, расположенным в центре точки. Потенциальные барьеры для электронов и дырок приняты равными 3.2 эВ и 4.2 эВ соответственно. Масса носителя за пределами нанокристалла берется равной массе свободного электрона. Для расчета спектра в самой квантовой точке используется k-р метод. В модели с резкой границей потенциал самополяризации (взаимодействие с полем собственного изображения) создает бесконечный потенциальный барьер, что ведет к завышенным значениям энергий электронов и дырок. Мы предположим наличие узкого промежуточного слоя толщины а вокруг квантовой точки, в котором диэлектрическая проницаемость плавно меняется от 12 для кремния до 3 для SiO₂ по закону $\varepsilon(r) = 12(R/a)^q$, где $q = \ln(4)R/a$.

Результаты расчета поляризационных поправок представлены в таблице, где, в величины оптической щели Δ в кремниевом

нанокристалле в отсутствие донора и без учета поляризационных полей. Кулоновские и поляризационные поля изменяют величину оптической щели:

$$\Delta' = \Delta + \delta_{ie} + \delta_{sp} + \delta_{eh} \, .$$

Здесь Δ' - новое значение оптической щели нанокристалла, δ_{ie} - поправка, обусловленная взаимодействием электрона и дырки с ионом и его изображением, δ_{sp} - поправка, учитывающая взаимодействие каждого из носителей с собственным изображением. Она чувствительна к ширине промежуточного слоя (см. таблицу). Наконец, δ_{eh} - поправка, полученная от кулоновского взаимодействия электрона и дырки, а также от их взаимодействия с изображениями друг друга.

Как показывают расчеты, взаимодействие носителей с примесным центром или с собственным изображением заметно смещает энергетический уровень, однако это смещение оказывается почти одинаковым, но противоположным по знаку для электрона и дырки. В результате такой компенсации величина оптической щели меняется очень незначительно. В то же время, электроннодырочное взаимодействие остается нескомпенсированным и заметно уменьшает оптическую щель нанокристалла. При этом бо'льший вклад в δ_{eh} (около 80%) дают именно поляризационные поля.

Работа выполнена при поддержке РФФИ (проекты 04-02-16493 и 05-02-16762) и Министерства образования и науки России (проект РНП 2.1.1.4022).

[1] В.С.Бабиченко, Л.В.Келдыш, А.П.Силин, ФТТ **22**, 1238 (1980).

[2] Э.Б.Каганович, Э.Г.Манойлов, И.Р.Базылюк, С.В.Свечников, ФТП **37**, 353 (2003).

R, nm	1	1.25	1.5	1.75	2	2.25	2.5	2.75	3
δ_{ie} , eV	-0.015	-0.015	-0.017	-0.016	-0.015	-0.013	-0.012	-0.012	-0.011
δ_{sp} , eV ($a = 0.25$ nm)	-0.009	-0.009	-0.008	-0.008	-0.009	-0.009	-0.010	-0.010	-0.009
δ_{sp} , eV (<i>a</i> = 0.125 nm)	-0.021	-0.020	-0.018	-0.018	-0.019	-0.019	-0.020	-0.020	-0.020
δ_{eh} , eV	-0.311	-0.251	-0.212	-0.183	-0.161	-0.144	-0.131	-0.119	-0.110
Δ, eV	2.411	2.047	1.834	1.695	1.599	1.528	1.475	1.434	1.401

Резонансы Фано в спектре фототока легированных полупроводников и гетероструктур с квантовыми ямами

В.Я. Алешкин, А.В. Антонов, Л.В. Гавриленко, В.И. Гавриленко.

Институт физики микроструктур РАН, Нижний Новгород, Россия

e-mail: aritany@ipm.sci-nnov.ru

В спектрах примесной фотопроводимости полупроводников, легированных мелкими донорами, наблюдаются узкие асимметричные пики в области энергий, соответствующих энергии продольного оптического (LO) фонона в этом материале (GaAs, InP) [1]. Такие пики отвечают резонансным состояниям, иногда их называют резонансами Фано [2].

Рассмотрим, каким образом в полупроводнике, легированном мелкими донорами, возникают резонансные состояния. Будем считать температуру достаточно низкой, так что все электроны находятся в основном состоянии донорных центров. При освещении образца светом с частотой близкой к частоте LO-фонона фотон может быть поглощен двумя способами. Во-первых, это поглощение при прямом переходе электрона из основного состояния донора в непрерывный спектр (см. рис.1). Во-вторых, это переход второго порядка через промежуточное состояние с поглощением фотона и испусканием LO-фонона. В результате такого перехода электрон вернется в локализованное состояние донора, при этом общая энергия системы электрон+фонон будет равна энергии электрона в непрерывном спектре. Потому такое состояние $|\varphi_q\rangle$ будет резонансным.

Рис.1. Схема оптических переходов электрона из основного состояния донора, при поглощении фотона с энергией близкой к энергии LO-фонона: 1 – переход в непрерывный спектр; 2, 3 – переходы в резонансное состояние $|\varphi_q >$ через промежуточные состояния в дискретном и непрерывном спектре, соответственно.

В данной работе получено общее выражение для расчета резонансов Фано в спектрах фототока, пригодное для описания полупроводников и полупроводниковых гетероструктур с квантовыми ямами (КЯ), легированных как донорами, так и акцепторами. Отметим что построенная теория является обобщением теории Фано [2] на случай, когда переход в резонансное состояние является переходом второго порядка. Результаты наших расчетов для объемного n-GaAs находятся в хорошем согласии со спектрами, полученными экспериментально (см. рис. 3).

1. Расчет вероятности поглощения кванта света.

Рассмотрим вероятность перехода электрона в единицу времени под действием света из основного состояния донора в резонансное состояние $|\varphi_q >$ (см. рис. 1). Очевидно, что для описания такого перехода необходимо рассматривать взаимодействие электрона с фотоном и фононом с точностью до второго порядка теории возмущений. Гамильтониан системы имеет вид:

$$H = H_0 + V_{ph} \exp(-i\omega t) + V_{LO}^+ \exp(i\omega_0 t)$$
(1)

где H_0 – гамильтониан невозмущенной системы, $V_{ph} V_{LO}^+$ - операторы поглощения электромагнитного излучения и испускания полярного оптического фонона соответственно.

Матричный элемент перехода из начального состояния $|i\rangle$ в состояние $|\phi_q\rangle$ равен

$$S_{\varphi i} = \sum_{m} \frac{\langle \varphi_{q} | V_{LO}^{+} | m \rangle \langle m | V_{ph} | i \rangle}{\hbar \omega + E_{f} - E_{m} + i\lambda} + \sum_{m} \frac{\langle \varphi_{q} | V_{ph} | m \rangle \langle m | V_{LO}^{+} | i \rangle}{-\hbar \omega_{0} + E_{f} - E_{m} + i\lambda}, \lambda \rightarrow 0$$

$$(2)$$

где $\hbar \omega$ и $\hbar \omega_0$ - энергии фотона и LO-фонона соответственно, E_f – энергия конечного состояния электрона, индекс *m* нумерует промежуточные состояния. В предыдущей работе [3] мы учитывали только первое резонансное слагаемое в выражении (2), оно играет основную роль в формировании пика (см. сравнение на рис. 3). В данной работе мы учитываем оба слагаемых. Полная вероятность поглощения света описывается квадратом модуля следующего матричного элемента:

$$< \Psi(E) | V^{ph} | i > = \frac{\Gamma(E)/2 < \psi(E) | V^{ph} | i >}{\sqrt{(E - E_f)^2 + \frac{\Gamma(E)^2}{4}}} \times \left(\alpha(E) + i + \frac{(E - E_f)}{\Gamma(E)/2} \right)$$
(3)

где $|\Psi(E)>$ - точная собственная функция, соответствующая энергии *E*, которая содержит вклад невозмущенных состояний континуума $|\Psi(E)>$ и дискретного спектра $|\varphi_q>$,

$$\begin{aligned} \alpha(E) &= \sum_{q,f} \frac{\langle \psi(E) | V^{LO} | \varphi_{q,f} \rangle}{\Gamma(E) / 2 \langle \psi(E) | V^{ph} | i \rangle} \times \\ & 2 \Biggl(P \int_{E_i}^{\infty} dE' \frac{\langle \varphi_{q,f} | V^{LO} | \psi(E') \rangle \langle \psi(E') | V^{ph} | i \rangle}{E - E} + \\ & + \int dE' \frac{\langle \varphi_{q,f} | V_{ph} | \psi(E') \rangle \langle \psi(E') | V^{LO} | i \rangle}{-\hbar\omega_0 + E_i - E'} \Biggr) \end{aligned}$$

и $\Gamma(E)/\hbar$ – частота переходов электрона из резонансного состояния $|\varphi_q > |$ в состояние континуума $|\psi(E)>$ за счет поглощения LO-фононов,

$$\Gamma(E) = 2\pi \sum_{q,f} \langle \psi(E) | V_{LO} | \varphi_{q,f} \rangle^2$$

Полная вероятность поглощения кванта света в единицу времени равна:

$$W(\omega) = \frac{2\pi}{\hbar} |\langle \Psi(\hbar\omega + E_i) | V_{ph} | i \rangle|^2 \qquad (4)$$

Отметим, что для получения выражения (3) нигде не использован явный вид H_0 , поэтому его можно применять также для описания полупроводников р-типа и полупроводников с анизотропным законом дисперсии в зоне проводимости.

Используя (3)-(4) и волновые функции дискретного и непрерывного спектра атома водорода, мы вычислили спектр примесного поглощения в объемном полупроводнике n-GaAs в области энергии LO-фонона (см. рис.2).

Кроме того, мы исследовали, как меняется резонансный пик при переходе к двумерному пределу на примере состояний двумерного атома водорода. Несмотря на то, что строго двумерный случай (2D) соответствует бесконечно узкой КЯ и никогда не реализуется на практике, на этом примере видны особенности изменения формы пика при переходе от трехмерного к двумерному случаю.

Рис. 2. Рассчитанные спектры вероятности поглощения для донора в объемном материале n-GaAs (сплошная линия) и в 2D случае в n-GaAs (пунктир). Спектры нормированы.

На рис. 2 приведены коэффициенты поглощения в двумерном и трехмерном случаях. Ширина пика определяется величиной Г, т.е. частотой электрон-фононного рассеяния. Эта величина в двумерном пределе почти в четыре раза возрастает, это вызвано более жестким взаимодействием с колебаниями решетки при уменьшении размерности. В реальной КЯ ширина резонансных пиков будет промежуточной между объемным и 2D случаем.

2. Спектр фотопроводимости. Сравнение с экспериментом.

На спектр фототока в области резонанса Фано сильное влияние оказывают частотные зависимости коэффициентов отражения и поглощения света, которые быстро изменяются из-за поглощения света на поперечных оптических фононах. Спектр фототока с учетом этих факторов имеет вид:

$$J(\omega) = BI(\omega) \frac{W(\omega)}{|A|^2} [1 - R(\omega)] \int_0^a \exp[-\eta(\omega)x] dx$$
(6)

где *B* –постоянная не зависящая от частоты, $I(\omega)$ - интенсивность падающего на образец света, $\eta(\omega)$ - коэффициент поглощения света, *d* - толщина по-глощающего слоя.

На рис. 3 приведены рассчитанные и измеренные спектры фототока в области резонанса Фано в образце n-GaAs. Для расчета были использованы следующие параметры GaAs: μ =0.0665 m_0 , m_0 - масса свободного электрона, κ_0 =12.46, κ_{∞} =10.58, $\hbar\omega_0$ =36.588 мэВ [4].

Рис. 3. Рассчитанные (кривые) и измеренный (точки) спектры фототока в n-GaAs при T = 4,2 K. Сплошная линия и пунктирная линии соответствуют учету обоих слагаемых в выражении (2) и только резонансного, соответственно. Все спектры были нормированы.

Измерения проводились на Фурьеспектрометре ВОМЕМ при T = 4,2 К. Образец n-GaAs выращен на полуизолирующей подложке GaAs жидкофазной эпитаксией. Эпитаксиальный слой был легирован Si с концентрацией $8.3 \cdot 10^{14}$ см⁻³ и имел толщину 70 мкм. Подвижность электронов при 77 К составила 5,9 $\cdot 10^4$ см²/Вс.

Работа поддержана РФФИ (04-02-17178) и программами Российской академии наук.

[1] K. Jin, J. Zhang, Z. Chen, et al., Phys. Rev. B 64, 205203 (2001).

- [2] U. Fano, Phys. Rev. 124, 1866 (1961)
- [3] V.Ya. Aleshkin, A.V. Antonov, L.V. Gavrilenko,
- V.I. Gavrilenko, JETP, v.101, pp. 822-830 (2005).
- [4] W. J. Moore, R. T. Holm, J.Appl. Phys. **80**, p.6939 (1996).

Фотолюминесценция эрбия в гетерогенной матрице аморфного кремния, полученного магнетронным распылением

М.С. Бреслер¹, <u>О.Б. Гусев¹</u>, А.В. Мудрый², Е.И. Теруков¹, Ю.К. Ундалов¹ ¹Физико-технический институт им. А.Ф. Иоффе РАН, Политехническая 26, Санкт- Петербург, Россия ²Объединенный институт физики твердого тела и полупроводников НАНБ, П. Бровки 19, Минск, Беларусь e-mail: oleg.gusev@mail.ioffe.ru

Одна из проблем, с которой сталкивается полупроводниковых матриц, использование легированных эрбием, в оптоэлектронике, - это недостаточная эффективность источников излучения на 1.54 µm и сильное температурное гашение интенсивности эрбиевой фотолюминесценции (ФЛ). Полупроводниковая матрица аморфного кремния, легированная тем. эрбием, выгодно выделяется что интенсивность и время жизни ФЛ эрбия в ней практически не зависят от температуры, что в значительной степени снимает эту проблему.

Однако оказалось, что получение образцов с высокой эффективностью ФЛ эрбия - процесс довольно сложный, поскольку заметная часть оптически активного эрбия, находящегося в аморфном кремнии, присутствует в нанокристаллах силиката, образующихся в газовой плазме при определенных давлениях газов и площади эрбиевой мишени [1]. Таким матрица аморфного образом, кремния, легированная эрбием, с нанокристаллами силиката представляет собой гетерогенную систему c шириной запрещенной зоны нанокристаллов значительно большей, чем у матрицы.

В предлагаемой работе на основании исследования кинетики времен спада ФЛ эрбия в пленках аморфного кремния, легированного эрбием, с нанокристаллами силикатов в зависимости от длительности импульса накачки и спектров возбуждения мы изучаем механизм возбуждения эрбия, находящегося как в матрице, так и в нанокристаллах силиката.

Пленки аморфного кремния толщиной 0.5 мкм. легированные эрбием. были получены полложке ситалла магнетронным на распылением эрбия в атмосфере силана, аргона и кислорода. В работе [1] было показано, что при определенной концентрации кислорода в газовом разряде, образуются нанокристаллы силикатов, содержащие эрбий, которые осаждаются на подложку. Концентрации эрбия и кислорода в образах с наибольшим квантовым выходом ФЛ $2.5 \times 10^{19} \text{ cm}^{-3}$ $1.1 \times 10^{20} \text{ cm}^{-3}$ и составляли соответственно.

Измерения кинетики спада эрбиевой ФЛ были выполнены при комнатной температуре для нескольких образцов. В качестве источника импульсной накачки использовался полупроводниковый лазер, излучающий на длине волны 658 нм. Длительность импульса лазера могла изменяться в диапазоне от 20 µs до 1.5 ms. Временное разрешение системы регистрации 5 µs.

Спектры ФЛ при комнатной температуре были получены при возбуждении линией 658 нм полупроводникового лазера. Спектр возбуждения люминесценции был получен с использованием монохроматора МДР12 и ксеноновой лампы мощностью 1000 Вт (ДКСЭЛ-1000).

Рис. 1. Спектр ФЛ

На рис. 1 приведен характерный спектр ФЛ эрбия в аморфном кремнии при комнатной температуре при возбуждении эрбия полупроводниковым лазером, излучающим на длине волны 658 нм, что соответствует возбуждению немного выше края запрещенной зоны аморфной фазы, но значительно ниже запрещенной зоны нанокристаллов. Наблюдаемая линия ФЛ с максимумом на

Рис. 2. Спектр возбуждения

1.54 μ m соответствует переходу ионов эрбия из первого возбужденного состояния ${}^4I_{13/2}$ в

основное ${}^{4}I_{15/2}$. На рис. 2 приведен спектр возбуждения эрбия, снятый на длине волны 1.54 µm, соответствующей максимуму спектральной линии. Как видно из рис. 2, заметный рост интенсивности ФЛ начинается при энергиях выше 2 eV, что соответствует ширине запрещенной зоне аморфного кремния исследуемого состава.

Практическое отсутствие узких линий в спектре возбуждения, характерных для прямого возбуждения эрбия, говорит о том что, как и в других полупроводниковых матрицах, эрбий в аморфном кремнии с нанокристаллами силиката возбуждается за счет межзонного поглощения света.

В этом случае, как и в других полупроводниковых матрицах, легированных редкоземельными элементами, эффективность возбуждения эрбия определяется эффективным сечением возбуждения σ_{eff} [2]:

$$\sigma_{eff} = \frac{\alpha}{N_{Er}} K$$

где α - межзонный коэффициент поглощения накачки, N_{Er} - концентрация оптически активного эрбия и K – коэффициент, определяющий эффективность передачи энергии от полупроводниковой матрицы к эрбию.

Примеры спада эрбиевой ФЛ в максимуме спектральной линии 1.54 µm при двух длительностях импульсов 20 µs и 0.7 ms показаны на рис. 3. Измерения были выполнены на линейном участке зависимости интенсивности ФЛ эрбия от мощности накачки.

Рис. 3.

Время спада интенсивности ФЛ эрбия хорошо описывается двумя экспонентами по формуле двух экспоненциального распада:

$$I(t) = I_{fast} exp(-t/\tau_{fast}) + I_{slow} exp(-t/\tau_{clow}) ,$$

где I(t) - интенсивность фотолюминесценции, зависящая от времени, τ_{fast} и τ_{slow} - времена жизни быстрой и медленной компонент распада. I_{fast} и I_{slow} - интенсивности этих компонент распада. Во всех случаях распад мог быть описан двумя экспонентами с характерными временами 27 µs для быстрой компоненты и 200 µs для медленной компоненты. На рис. 4 показана зависимость отношения I_{fast} / I_{slow} компонент распада ФЛ на длине волны 1.54 мкм от длительности импульса накачки. Как видно из этого рисунка, отношение компонент изменяется от 3 до примерно 1 при длинных импульсах возбуждения. Времена жизни компонент τ_{fast} и τ_{slow} указаны на этом же рисунке стрелками.

Рис. 4.

Присутствие в кинетике распада двух компонент с сильно различающимися временами естественным образом объясняется двумя Er³ различными группами ионов с характерными временами жизни 27 и 200 µs. Каждая группа соответствует состояниям ионов эрбия, имеющим узкое распределение времен распада. Поскольку исследуемый материал аморфный кремний - представляет собой гетерогенную матрицу с нанокристаллами силиката логично предположить, что эрбий может находиться как в нанокристаллах, так и однородном аморфном кремнии. Мы полагаем, характерное время распада что 27 us соответствует эрбию в аморфной матрице, а эрбию, находящемуся в диэлектрических нанокристаллах соответствует время распада 200 µs. Возбуждение эрбия в аморфной фазе происходит за счет передачи энергии от свободных электронов ионам эрбия посредством захвата электронов нейтральными дефектами (процесс DRAE) [3]. Возбуждение эрбия в нанокристаллах происходит через передачу энергии от эрбия, возбужденного в аморфном кремнии, эрбию, находящемуся в нанокристаллах силикатов.

[1]. М.С. Бреслер, О.Б. Гусев, Е.І. Terukov, Yu.K. Undalov. Physica status solidi (b), b. 242, n. 10, p. (2005)

[2]. O.B. Gusev, M.S. Bresler P.E. Pak, I.N. Yassievich, M. Forcales, N.Q. Vinh, T. Gregorkiewicz, Physical Review B, v.64, p. 075302, (2001)

[3]. I.N. Yassievich, M.S. Bresler, O.B. Gusev. J. Phys. C., v. 9, issue 43, p. 9415 (1997)

Переходы между уровнями донорного центра в Si со спонтанным излучением длинноволновых акустических фононов

Е.В.Демидов, М.С.Кузнецов, В.В.Цыпленков, В.Н.Шастин

Институт физики микроструктур РАН, ГСП-105, Нижний Новгород, Россия e-mail: <u>demidov@ipm.sci-nnov.ru</u>

Вероятности безизлучательных переходов между высоковозбужденными состояниями водородоподобного примесного центра можно рассматривать квазиклассически [1]. Поэтому при таких переходах, как и для свободных электронов, характерная энергия излучаемого фонона $\Delta E \approx \sqrt{8ms^2}|E|$, где s - скорость звука, m - эффективная масса, Е - энергия электрона. Для кремния 8ms² ~ 1 мэВ, величина ΔЕ мала по сравнению с энергией ионизации, а волновой вектор фонона д гораздо меньше обратного Боровского радиуса примеси ав⁻¹. В другом предельном случае, при переходах электронов между состояниями с большой разностью энергий, излучается фонон с q $>> a_B^{-1}$. Вероятность таких переходов определяется перекрытием хвостов волновых функций (ВФ) начального и конечного состояний электрона в импульсном представлении. Асимптотика ВФ при больших значениях импульса и вероятности переходов с учетом анизотропии эффективной массы электронов в полупроводнике были вычислены в [2]. Вероятности таких переходов малы и монотонно уменьшаются с ростом ΔЕ. Для переходов с уровня 3p₀ в состояния 2p+1 и 2p0 из квазиклассики следует, что характерная энергия излучаемого фонона ΔE~2-3 мэВ и наиболее вероятны переходы 3p₀ → 2p+1. Однако в Si:As при оптической накачке состояния 3р₀ наблюдается стимулированное излучение с расположенного гораздо ниже уровня 2р₀ (см. Рис.1), что говорит о преимущественной релаксации электронов в это состояние. Нами рассчитаны времена релаксации возбужденных доноров в Si с испусканием акустических фононов. Полученные данные позволяют объяснить наблюдаемое в эксперименте переключение частоты лазерной генерации при изменении частоты накачки.

Вероятность переходов между связанными состояниями примесного атома со спонтанным испусканием длинноволнового акустического фонона с волновым вектором **q** определяется выражением (см., например, [1])

$$W_{12}(q) = \frac{\pi E_D^2 q}{V s \rho} |M_{12}(q)|^2 \,\delta(E_1 - E_2 - \hbar \omega),$$
$$M_{12}(q) = \int d^3 r \Psi_1^*(r) e^{iqr} \Psi_2(r),$$

где ω =sq, ρ - плотность, V - объем кристалла, E_i – энергия, Ψ_i – ВФ состояния. Для продольных акустических фононов следует заменить E_D^2 на $(\Xi_d + \Xi_u \cos^2 \theta)^2$, а для поперечных на $1/4\Xi_u^2 \sin^2 2\theta$,

где θ - угол между ${\bm q}$ и осью симметрии долины, константы деформационного потенциала $\Xi_d{=}5{_3}B$ и $\Xi_u{=}8.77{_3}B.$ В импульсном представлении матричные элементы $M_{12}({\bm q})$ преобразуются в свертку

$$\int d^3k \Psi_1^*(k) \Psi_2(k-q) \cdot$$

Т.к. $\Psi_i(\mathbf{k})$ в Si вытянуты в направлении оси симметрии долины, то перекрытие ВФ максимально для фононов в направлении [100], которые и дают основной вклад в рассеяние. Поэтому использована скорость распространения продольных акустических волн $s_L^{[100]}$ =8.48 10^5 см/с, а для поперечных колебаний $s_T^{[100]}$ =5.87 10^5 см/с. Отметим, что взаимодействие с поперечными фононами пропорционально малому множителю $\sin^2 2\theta$ и основной вклад в рассеяние дают продольные фононы. Полная частота переходов определяется суммированием $W_{12}(\mathbf{q})$ по всем волновым векторам

$$w_{12} = \frac{V}{(2\pi)^3} \int d^3 q W_{12}(q)$$

и поляризациям фононов.

Так как время безизлучательной релаксации сильно зависит от величины a_B , то в кремнии существенен учет анизотропии эффективной массы электрона и Боровского радиуса примеси [3, 4]. Фолкнер [3] получил очень хорошее согласие с наблюдаемыми в эксперименте энергиями оптических переходов, аппроксимируя донорные состояния небольшим числом ортогональных "деформированных" водородоподобных функций. Он отметил также, что низшие состояния (1s, 2p₀, 2p₊₋₁) можно с очень высокой точностью описывать одиночными деформированными водородоподобными ВФ. Однако состояния с большими квантовыми числами становятся смесью таких функций с различными (n, 1).

Нами были использованы анизотропные водородоподобные ВФ в виде

$$\Psi_{nlm}(r) = \frac{1}{\sqrt{a^2b}} F_{nlm}\left(\frac{x}{a}, \frac{y}{a}, \frac{z}{b}\right),$$

где $F_{nlm}(\mathbf{r})$ - ВФ атома водорода, а поперечный и продольный эффективные Боровские радиусы а и b - варьируемые параметры. Как известно [4], для состояний с одинаковыми квантовыми числами (1,m) минимум полной энергии достигается при одних и тех же значениях вариационных параметров для всех n, а энергии этих состояний пропорциональны $1/n^2$. Для кремния были использованы поперечная эффективная масса электрона $m_{\perp}=0.1905 \, m_0$, продольная масса $m_{\parallel}=0.9163 \, m_0$ (где m_0 - масса свободного электрона) и диэлектрическая проницаемость $\varepsilon=11.4$ (см. [3]). Найденные вариационные параметры приведены в Таблице 1. Отметим, что анизотропия b/a различных состояний отличается незначительно. В то же время радиусы состояний $2p_0$ и $2p_{\pm 1}$ отличаются почти в полтора раза. Погрешность для энергий 1s, $2p_0$, $2p_{\pm 1}$ состояний при использовании простых вариационных функций составляет менее 0.2%. Однако для 2s, $3p_0$ и $3p_{\pm 1}$ состояний погрешность возрастает до 12, 7 и 9% соответственно.

	а нм	b нм	a/b	Е мэВ
1s	2.37	1.37	1.73	31.21
2p ₀	1.80	1.09	1.65	11.47
$2p_{\pm 1}$	2.67	1.64	1.63	6.39

Таблица 1 Вариационные параметры.

Параметры а и b у состояний отличающихся только квантовым числом n совпадают. Поэтому для переходов между ними (например, 2s → 1s), при вычислении матричных элементов $M_{12}(\mathbf{q})$ можно перейти к интегрированию по $\mathbf{r}' =$ (x/a, y/a, z/b). После этого "деформация" ВФ переносится на $\mathbf{q}' = (aq_x, aq_y, bq_z)$. Если произведение угловых зависимостей двух ВФ выразить через сумму сферических функций, а плоскую волну разложить по сферическим гармоникам, то интегралы по углам и r' легко вычисляются. После чего нетрудно проинтегрировать вероятности переходов по углам испускаемых фононов. Т.к. анизотропия различных состояний отличается незначительно, то при расчетах вероятностей остальных переходов мы полагали ее одинаковой. Отличие значений, соответствующих общей анизотропии равной анизотропии начального или конечного состояний, в худшем случае не превышает 25% (отметим, что погрешность использованных вариационных ВФ может приводить к такой же ошибке).

Работа выполнена при поддержке РФФИ грант 05-02-16734.

	W_{L1}	W_{L2}	w_{T1}	w_{T1}	ΔЕ мэВ
$2p_0 \rightarrow 1s$	1.7	2.1	0.02	0.02	19.8
$2s \rightarrow 2p_0$	20	23	1.2	1.1	2.7
2s→1s	4.9	-	0.12	-	22.4
$2p_{\pm 1} \rightarrow 2s$	3.2	4.3	0.8	0.8	2.4
$2p_{\pm 1} \rightarrow 2p_0$	13	14	0.4	0.4	5.1
$2p_{\pm 1} \rightarrow 1s$	0.01	0.01	0	0	24.9
$3p_0 \rightarrow 2p_{\pm 1}$	0.78	0.82	0.52	0.52	0.9
3p ₀ →2s	3.5	4.1	0.9	0.7	3.4
$3p_0 \rightarrow 2p_0$	24	-	0.48	-	6.0
$3p_0 \rightarrow 1s$	0.12	0.15	0	0	25.8
$3p_{\pm 1} \rightarrow 3p_0$	0.10	0.10	0.53	0.50	2.4
$3p_{+1} \rightarrow 2p_{-1}$	3.8	-	0.3	-	3.3
$3p_{+1} \rightarrow 2p_{+1}$	2.4	-	0.07	-	3.3

Таблица 2 Вероятности переходов (нормированные на $10^9 c^{-1}$).

[1] В.Н.Абакумов, В.И.Перель, И.Н.Ясиевич Безызлучательная рекомбинация в полупроводниках, С.-Петербург 1997.

[2] С.В.Мешков, ФТТ 21(4), 1114 (1979).

[3] R.A.Faulkner, Phys. Rev. 184, 713 (1969).

[4] R.J.Bell, W.T.Bousman, Jr., G.M.Goldman and

D.G.Rathbun, Surface Sci. 7, 293 (1967).

Рис.1 Переключение частоты лазерной генерации в Si:As при изменении частоты накачки.

О нелинейной генерации излучения на разностной частоте в среднем и дальнем инфракрасных диапазонах в полупроводниковых волноводах на основе фосфида галлия

В.Я. Алешкин¹, А.А. Афоненко², <u>А.А. Дубинов¹</u>

¹ Институт физики микроструктур Российской академии наук, Н. Новгород, Россия, ² Белорусский государственный университет, 220050 Минск, Белоруссия e-mail: <u>sanya@ipm.sci-nnov.ru</u>

Несмотря на то, что компактные источники излучения в терагерцовом диапазоне частот в настоящее время очень востребованы для различных применений, количество таких источников мало. Полупроводниковые лазеры традиционных конструкций могут излучать только в ближнем инфракрасном (ИК) и видимом диапазоне частот, вследствие увеличения роли безызлучательной Оже рекомбинации, при использовании полупроводников с малой шириной запрещенной зоны. На сегодняшний день наиболее значительные результаты достигнуты в области создания квантовых каскадных полупроводниковых лазеров [1]. Однако чрезвычайно сложная зонная схема каскадных структур и высокие требования по контролю параметров сдерживают их распространение и использование.

Рис. 1. Зависимости от координаты напряженности магнитного поля разностной моды (сплошная кривая), а также показателя преломления n(штриховая кривая на вставке) на частоте 1.8 ТГц для рассматриваемой структуры. Пунктирной линией на вставке показана амплитуда высокочастотных мод в условных единицах. Слой 1 воздух, слои 2 и 4 - GaP, слои 3 и 5 - AlP, слой 6– металл. Толщины слоя 2 - 300 мкм, слоев 3, 4 и 5 - по 0.8 мкм. На вставке изображена область волновода для коротковолновых мод.

Альтернативным выходом из этой сложной ситуации является отказ от создания инверсии населенностей близлежащих межзонных и внутризонных уровней и разработка безынверсных схем генерации, в которых дальнее или среднее ИК излучение создавалось бы вследствие квадратичной нелинейности полупроводниковой структуры благодаря выделению разностной частоты $\omega = \omega_2 - \omega_1$ при смешивании двух полей на частотах ω_1 , ω_2 ближнего ИК диапазона. Отметим, что в настоящее время наиболее мощные полупроводниковые лазеры генерируют излучение именно в области длины волны 1 мкм [2].

Природа решеточной нелинейной восприимчивости второго порядка полярных полупроводников А₃В₅ – ангармоничность оптических колебаний решетки, поэтому имеется резонанс нелинейной восприимчивости при воздействии двух коротковолновых волн (ближнего ИК диапазона) большой амплитуды и разницей частот, лежащей в окрестности частоты поперечного оптического фонона. Зависимость тензора нелинейной диэлектрической проницаемости второго порядка от частот волн, воздействующих на среду, в полупроводниках А₃В₅ была рассмотрена в работе [3]. Из всей группы полупроводников А₃В₅ наиболее подходящим видится использование в качестве нелинейного элемента GaP, так как он обладает достаточно большой решеточной нелинейностью второго порядка [4]. Кроме того, для эффективной параметрической генерации необходимо выполнение условия фазового синхронизма, состоящего в равенстве фазовых скоростей волны нелинейной поляризации, возникающей при взаимодействии мод ближнего ИК диапазона из-за решеточной нелинейности, и разностной моды. Для генерации излучения в дальнем ИК диапазоне условие фазового синхронизма может быть выполнено в обычном диэлектрическом волноводе на основе GaP, в котором смешиваются две коротковолновые моды в области длины волны 1 мкм, без сложных конструкций необходимых при использовании волновода на основе GaAs [5]. Причина этого состоит в том, что в GaP частотная дисперсия в области длин волн около 1 мкм из-за значительного удаления от края собственного поглощения небольшая и показатель преломления ($n_g = 3.3 - 3.5$), а вместе с ним и эффективный показатель преломления нелинейной поляризации $n_{nl} = (n_2 \omega_2 - \omega_2)$ $n_1\omega_1/(\omega_2 - \omega_1)$ оказываются значительно меньше, чем в GaAs, где $n_g \sim 4$.

Волновод для коротковолнового излучения можно сформировать путем заключения слоя GaP в слои AlGaP с меньшим показателем преломления. AlGaP достаточно хорошо согласован по размеру решетки с GaP (*a*_{GaP} = 0.54506 нм, *a*_{AlP}

= 0.54635 нм) [4]. Волноводом же для излучения дальнего ИК диапазона может служить достаточно толстая полуизолирующая подложка GaP, примыкающая к одному обкладочному слою AlGaP. Для увеличения амплитуды разностной моды в области нелинейного взаимодействия мод целесообразно нанести металл на поверхность другого обкладочного слоя AlGaP, тем самым создав условия для возбуждения поверхностной плазмонной моды.

Рис. 2. Зависимость мощности разностной моды для структуры на подложке из GaP (сплошная кривая, $\lambda_1 = 0.95$ мкм) (а) и для структуры на подложке из Si (сплошная кривая, $\lambda_1 = 0.97$ мкм) (b), а также зависимость модуля компоненты тензора нелинейной восприимчивости GaP $\mathcal{E}_{xyz}^{(2)}$ (штриховая кривая) от частоты разностной моды.

В случае, когда структура волновода (рис. 1) выращена на плоскости (001), а высокочастотные моды имеют ТЕ-поляризацию и распространяются вдоль направления [110], нелинейная поляризация в GaP перпендикулярна плоскости слоев и возбуждает на разностной частоте TMмоду (как в GaAs) [5].

Результаты расчетов мощности разностной моды для предложенной структуры, при мощности генерации коротковолновых мод 10 Вт, представлены на рис. 2а. В расчетах наибольшая длина волны (λ_1) для коротковолновых мод фиксировалась, при этом изменение длины волны разностной моды достигалось за счет изменения длины волны другой коротковолновой моды. Зависимость мощности от частоты разностной моды имеет большое число резонансных пиков. Каждый из них соответствует моде волновода. Такое большое число мод связано с большой шириной волновода (~ 300 мкм). Из рисунка видно, что максимальная мощность в такой структуре будет только в дальнем ИК диапазоне излучения. Как видно из рис. 2 нелинейная проницаемость очень мала в районе 8.5 ТГц, поэтому и мощность на разностной частоте в этом диапазоне имеет провал. В области среднего ИК диапазона, где нелинейная проницаемость имеет максимум, также велико и поглощение излучения разностной моды на фононах, поэтому мощность намного меньше, чем в дальнем ИК диапазоне. А в более коротковолновой области среднего ИК диапазона уже не выполняется условие фазового синхронизма при использовании диэлектрического волновода.

Так как постоянная решетки у Si (a_{Si} = 0.5431 нм) близка по величине к постоянной решетки GaP ($a_{GaP} = 0.54506$ нм) [4], то возможен рост GaP на кремниевой подложке [6]. При этом показатель преломления в кремнии для среднего и дальнего ИК диапазонов больше, чем в GaP, поэтому условие фазового синхронизма выполняется и при использовании диэлектрического волновода в среднем ИК диапазоне. Кроме того, в нелегированном кремнии поглощение излучения в среднем и дальнем ИК диапазонах мало, поэтому мощности, которые можно получить, значительно больше (рис. 2b). Действительно, разностная волна будет распространяться в основном в кремниевой подложке, а взаимодействие высокочастотных мод будет происходить в выращенном на ней волноводе на основе GaP.

Расчет показал, что в планарном волноводе с шириной 100 мкм на подложке из Si при мощностях коротковолновых мод 10 Вт мощность разностной моды может достигать до 5 мВт в области частот 10 – 14 ТГц, до 100 мкВт в области частот 3 – 8 ТГц и до 0.5 мВт в области частот ты 19 ТГц при комнатной температуре.

Работа выполнена в рамках проектов: РФФИ № 04-02-17432, РФФИ - БРФФИ №06-02-81020, CRDF #RUE1-2657-NN-05, Программ Президиума РАН "Низкоразмерные квантовые структуры" и "Электромагнитные волны терагерцового диапазона", Программы ОФН РАН "Полупроводниковые лазеры".

- [1] Kohler R., et al. Nature. **417**, 156 (2002)
- [2] Слипченко С.О. и др. ФТП, 38, 1477 (2004).
- [3] Flytzanis C. Phys. Rev. B, 6, 1264 (1972).
- [4] Madelung O. Semiconductors: Data Handbook. Springer-Verlag, 2003.
- [5] Afonenko A.A., et al. Semicond. Sci. Technol.
- **20**, 357 (2005).
- [6] Soga T., et al. J.Crystal Growth. 132, 414 (1993).

Микро-фотолюминесценция квантовых точек GaN в AlN матрице, выращенных методом молекулярно-лучевой эпитаксии

<u>К.С.Журавлев</u>¹, Д.Д.Ри¹, В.Г.Мансуров¹, А.Ю.Никитин¹, П.П.Пашков², П.-О.Хольтц²

¹ Институт физики полупроводников СО РАН, пр. Лаврентьева 13, Новосибирск, 630090, Россия ²Университет Линчопинга, S-581 83 Линчопинг, Швеция

GaN квантовые точки (КТ) в матрице AlN, выращенные в фазе вюрцита, представляют значительный интерес из-за информации о присутствии в них сильного встроенного электрического поля (до 9 МВ/см), вызванного спонтанной и пьезоэлектрической поляризацией материала КТ. Электрическое поле уменьшает энергию рекомбинационного излучения из-за квантово-размерного эффекта Штарка и неравновесных увеличивает время жизни носителей заряда, разделяя их в пространстве. В результате структуры с КТ имеют широкий спектр фотолюминесценции (ФЛ), энергия максимума которого смещается на почти 1 эВ при варьировании плотности носителей заряда в КТ. Насколько нам известно, этот сдвиг является наибольшим полупроводников для и полупроводниковых структур. До сих пор. однако, не выяснено, что является основной причиной огромного сдвига полосы ΦЛ: изменение энергии оптических переходов в КТ из-за экранирования встроенного электрического поля неравновесными носителями заряда или зависимость времени жизни неравновесных носителей заряда от размеров КТ.

В данной работе для выяснения причины сдвига полосы ФЛ при изменении плотности носителей заряда исследовались люминесцентные свойства гексагональных GaN/AlN КТ методом микрофотолюминесценции (микро-ФЛ).

Структуры с одиночным слоем КТ были молекулярно-лучевой выращены методом эпитаксии на подожке (0001) сапфира. На нитридизированной подложке сапфира выращивался слой AlN толщиной около 0,2 мкм, затем формировался одиночный слой GaN КТ. который закрывался 10 нм слоем AlN. Подробности роста структур приведены в статье [1]. Плотность КТ составляла 10¹⁰ см⁻². При лазерный исследовании микро-ФЛ луч фокусировался в пятно диаметром 1,5 мкм. Максимальная мощность лазерного излучения с энергией кванта света *h*@= 4.66 эВ равна 5 мВт.

В спектре низкотемпературной микро-ФЛ структур с КТ было обнаружено несколько ультрафиолетовых линий и широкая полоса ФЛ с максимумов около 2 эВ. Относительная интенсивность УФ ФЛ линий зависит от положения лазерного пятна на поверхности образца и варьируется от образца к образцу.

Ширина наиболее узкой линии равна 20 мэВ.

При повышении температуры измерений от 5 до 300К интенсивность УФ линий уменьшалась примерно в 10 раз. При этом интенсивность высокоэнергетичных линий уменьшалась наиболее значительно, что приводило к красному смещению УФ части спектра.

Рис.2. Спектры микро-ФЛ образца с GaN/AlN КТ, измеренные при различных температурах.

Отчетливо видимые УФ линии незначительно смещались в низкоэнергетическую сторону при повышении температуры измерений из-за температурного уменьшения ширины запрещенной зоны нитрида галлия.

Красный сдвиг УФ части спектра ФЛ наблюдался также при понижении мощности возбуждения. Этот красный сдвиг связан с нелинейной зависимостью интенсивности отдельных УФ линий от мощности возбуждения, а имеено: интенсивность высокоэнергетичных УФ линий сверхлинейно, а низкоэнергетичных УФ линий сублинейно изменяется с мощностью возбуждения.

Рис.3. Зависимости интенсивности ФЛ, измеренной при T=5К в различных точках спектра: вблизи 307 нм (круги), 427 нм (треугольники) и 577 нм (квадраты), от мощности лазерного возбуждения.

Важным является то, что энергетическое положение всех линий ФЛ не изменяется при варьировании мощности возбуждения. Следует отметить, что мы не обнаружили $\Phi Л$ дефектов в слоях AlN, выращенных в тех же условиях, и не содержащих монослоев GaN.

Мы связываем отдельные линии ФЛ с рекомбинацией в нескольких подгруппах КТ с различными размерами. Различная зависимость интенсивности ФЛ от температуры и мощности возбуждения есть следствие конкуренции каналов излучательной и безызлучательной рекомбинации в КТ. В «малых» КТ с малым временем жизни неравновесных носителей заряда насыщается канал безызлучательной рекомбинации, а в «больших» КТ, имеющих большее временем жизни неравновесных носителей встроенного заряда из-за первым электрического поля, насыщается излучательный канал, что приводит к сублиненйной зависимости интенсивности УФ линий от мощности возбуждения.

Оценка концентрации электронно-дырочных пар, выполненная с учетом коэффициента поглощения света в GaN КТ и времени жизни неравновесных носителей заряда, взятых из работы [2], показала, что в одной КТ присутствует не более одной электроннодырочной пары. Отсутствие сдвига линий ФЛ свидетельствует о незначительном экранировании встроенного электрического поля в GaN/AIN КТ неравновесными носителями заряда.

 V.G. Mansurov, Yu.G.Galitsyn, A.Yu. Nikitin, K.S. Zhuravlev, and Ph.Vennegues. phys. stat. sol. (с), принято в печать.

[2]. J.Simon, T.Pelekanos, C.Adelman, E.Martinez-Guerrero, R.Andre, B.Daudin, Le Si Dang, and H.Mariette. Phys.Rev.B, **68**, 035312 (2003).

Работа поддержана РФФИ (гранты №05-02-16901 и 05-02-17259).

Прямое наблюдение процесса захвата носителей заряда в массив самоорганизующихся квантовых точек

<u>В.И.Зубков¹</u>, И.С.Шулгунова¹, А.В.Соломонов¹, М.Geller², A.Marent²,

D.Bimberg², А.Е.Жуков³, Е.С.Семенова³, В.М.Устинов³

¹Санкт-Петербургский электротехнический университет «ЛЭТИ»,

ул. Проф. Попова 5, Санкт-Петербург, Россия

²Institut für Festkörperphysik, Technische Universität Berlin, Hardenbergstrasse 36, 10623 Berlin, Germany ³Физико-технический институт им.А.Ф.Иоффе РАН, ул. Политехническая 26, Санкт-Петербург, Россия e-mail: <u>VIZubkov@mail.eltech.ru</u>

В последнее десятилетие гетероструктуры с квантовыми точками (КТ) интенсивно изучаются различными методами с целью получения дешевых и высокоэффективных лазерных диодов и оптических усилителей [1]. Недавно гетероструктуры с КТ стали рассматриваться как перспективный материал для одноэлектронных приборов памяти. Ключевыми параметрами такого прибора памяти являются скорость захвата носителей, вероятность эмиссии и величина запасенного в КТ заряда. С этой точки зрения емкостная спектроскопия может быть наиболее удобным способом для всестороннего изучения данной проблемы. В отличие от других измерительных методик, емкостная спектроскопия является количественной и может дать точную и важную информацию о скоростях, зарядах и электронных уровнях в структурах с квантовыми ямами или квантовыми точками [2 - 4].

Переходные процессы эмиссии носителей заряда из массива самоорганизованных квантовых точек InAs/GaAs подробно изучались ранее [4]. В противоположность этому, емкостные переходные процессы захвата носителей в КТ никогда ранее не исследовались. Причина в том, что ожидаемые скорости захвата для типичного уровня легирования в GaAs лежат в пикосекундном диапазоне, недоступном для современного измерительного оборудования [5].

В данной работе впервые проведены исследования по прямому наблюдению процесса захвата носителей заряда в массив самоорганизующихся квантовых точек методом перезарядки емкости. Далее мы предлагаем метод для обработки переходных процессов захвата носителей заряда, **DLTS захвата**, или **Capture DLTS**, подобно известному методу DLTS (Deep Level Transient Spectroscopy), используемому для переходных процессов эмиссии носителей заряда [6].

Для этой цели были специально изготовлены образцы, представляющие собой диодные n^+ *p*-структуры с базой *p*-типа на основе GaAs с предельно низкой концентрацией легирующей примеси, содержащие слой самоорганизованных квантовых точек InAs. Концентрация примеси в слаболегированном слое составляла 2•10¹⁵ см⁻³. Слой квантовых точек располагался на глубине 1500 нм от металлургического контакта. При всех смещениях он был внутри области объемного заряда, что еще более радикально снижало эффективную концентрацию носителей, участвующих в процессе захвата в КТ. Подготовка образцов для емкостных измерений завершалась путем формирования мезы диаметром 800 мкм.

Для измерения емкостных переходных процессов использовался емкостной мост Boonton 7200 на рабочей частоте 1МГц и импульсный генератор Agilent 33250А. Измерения проводились в диапазоне температур 10...200 К. Диапазон постоянных смещений определялся по анализу C-V-зависимостей. Длительность заполняющих импульсов основных носителей заряда варьировалась от 1 мс до 15 с.

Переходные процессы захвата носителей заряда были зарегистрированы во временном диапазоне от десятков секунд до долей мс при измерении температуры от 10 до 140 К (Рис. 1). Они характеризовались противоположным знаком по сравнению с переходными процессами эмиссии и имели некоторое отличие от последних. Было обнаружено, что емкостные переходные процессы захвата, подобно эмиссионным, носят явно неэкспоненциальный характер, а также демонстрируют сильную зависимость от температуры и смещения.

Рис.1. Емкостные переходные процессы захвата и эмиссии носителей из массива InAs KT при температурах, K: 1 - 59.2; 2 - 67.3; 3 - 77.1. Смещение U = -1.1 V.

Наблюдаемая очевидная обратимость переходных процессов захвата и эмиссии, а также тот факт, что они могут быть измерены в одном цикле, позволили нам предложить обработку емкостных переходных процессов захвата с помощью двухстробового (box-car) интегрирования, как это делается в DLTS измерениях эмиссионных переходных процессов. Пример полученных таким способом спектров *DLTS захвата* при различных обратных смещениях приведен на Рис. 2.

Рис.2. Спектры DLTS *захвата* n⁺-*p*-образца, содержащего массив InAs KT.

Обратное смещение *U*, В: 1 – 1.6; 2 – 1.5; 3 – 1.4; 4 – 1.2; 5 – 1.0. Амплитуда импульса = 0.1 В. Длительность = 1 с. Окно скорости = 562.3 мс.

Спектры DLTS захвата имели знак, обратный по отношению к обычным спектрам *DLTS эмиссии* (Рис. 3), как результат противоположного характера переходного процесса эмиссии и захвата. Подобно эмиссионным спектрам DLTS, пики спектров DLTS захвата смещались с изменением приложенного смещения, что говорило о наличии активационного процесса.

Рис.3. Спектры DLTS э*миссии* n^+ -*p*-образца, содержащего массив InAs KT.

Обратные смещения – как на Рис.2. Амплитуда импульса = 0.1 В. Длительность = 1 с. Окно скорости = 187.4 мс.

Для скорости эмиссии носителей с глубокого уровня известно выражение [6]

$$e(T) = \sigma v_{th} N_C \exp\left(-\frac{E_A^e}{kT}\right). \tag{1}$$

По аналогии, целесообразно ввести экспоненциальный температурный множитель в выражение для скорости захвата носителей заряда

$$c(T) = AT^{2} \exp\left(-\frac{E_{A}^{c}}{kT}\right),$$
(2)

в развитие обычно используемой формулы [6]

$$c = n v_{th} \sigma . \tag{3}$$

E^{*c*}_{*A*} может рассматриваться в качестве наблюдаемой энергии активации для процесса захвата носителей в KT.

Из (1) и (2) построением графиков Аррениуса определялись энергии активации для переходных процессов захвата и эмиссии в зависимости от приложенного смещения *U*, Рис. 4.

Рис.4. Полевая зависимость энергий активации для процессов захвата (1) и эмиссии (2) носителей заряда в n^+ -*p*-образце, содержащем массив самоорганизующихся KT InAs/GaAs.

Варьирование амплитуды импульса заполнения показало изменение степени неэкспоненциальности переходных процессов. На этой основе сделан вывод о том, что емкостные переходные процессы захвата носителей могут служить эффективным способом зондирования энергетических состояний в массиве квантовых точек.

Работа выполнялась при поддержке проектов РФФИ и ЕС SANDiE (NMP4-CT-2004-500101), а также грантов Президента РФ (MD-4277.2004.2), Российского фонда поддержки науки и DAAD.

[1] Bimberg, D., Proc. 11th Int. Symp. "Nanostructures: Physics and Technology". St Petersburg, Russia, 1 (2003).

[2] Zubkov, V. I., Melnik, M. A., Solomonov, A. V., et al., Phys. Rev. B, **70**, 075312 (2004).

[3] Zubkov, V.I., Kapteyn, C.M., Solomonov, A.V.,

et al., J. Phys.: Condens. Matter, **17**, 2435 (2005). [4] Kapteyn, C. M. A., Heinrichsdorff, F., Stier, O.,

et al., Phys. Rev. B, **60**, 14265 (1999).

[5] Engström, O., Kaniewska, M., Fu, Y., et al., Appl. Phys. Lett., **85**, 2908 (2004).

[6] Lang, D. V., J. Appl. Phys., 45, 3023 (1974).

Исследование примесного магнитопоглощения в гетероструктурах Ge/GeSi при импульсном фотовозбуждении

В. Я. Алешкин¹, А. В. Иконников¹, В. И. Гавриленко¹, О. А. Кузнецов², К. Е. Спирин¹

¹ Институт физики микроструктур РАН, ГСП-105, Нижний ГСП-105, Нижний Новгород, 603950, Россия.

² Научно-исследовательский физико-технический институт ННГУ, пр. Гагарина, 23, 603950, Нижний Новгород, Россия

e-mail: antikon@ipm.sci-nnov.ru

Введение

Гетероструктуры Ge/GeSi с квантовыми ямами являются подходящим модельным объектом для изучения трансформации энергетических спектров при переходе от объёмных структур к квантоворазмерным слоям. В работе [1] мы продемонстрировали новый дифференциальный метод измерения примесного магнитопоглощения в ТГц-диапазоне в таких структурах при межзонном оптическом возбуждении носителей заряда. Модуляция примесного поглощения возникает вследствие захвата свободных носителей ионизованными примесями, что также приводит к значительному обужению линий поглощения вследствие уменьшения флуктуаций потенциала. Это позволило обнаружить линии, связанные с возбуждением мелких акцепторов, которые не удавалось разрешить традиционным методом примесной фотопроводимости [2]. Настоящая работа посвящена изучению примесного магнитопоглощения в ТГц-диапазоне при импульсном межзонном оптическом возбуждении при T = 4.2 К. Определены характерные времена релаксации поглощения, и выявлены основные закономерности кинетики для свободных и захваченных на примеси носителей заряда.

Эксперимент

Исследуемые многослойные гетероструктуры Ge/Ge_{1-x}Si_x ($d_{\text{Ge}} = 200 - 350$ Å, $d_{\text{GeSi}} \approx 200$ Å, x ≈ 0.1 , число периодов 80 – 160) были выращены на низколегированных подложках Ge(111) методом газотранспортной эпитаксии из сверхчистых газов. Полная толщина структур превышала критическую, поэтому на границе подложка/гетероструктура происходила релаксация упругих напряжений. В результате этого слои Ge оказываются двуосно-растянутыми, а слои GeSi – двуосно-сжатыми. Структуры специально не легировались, концентрация остаточных акцепторов составляет порядка или менее 10¹⁴ см⁻³ [2]. Для избежания эффектов интерференции микроволнового излучения в образцах подложки шлифовались на клин с углом 2°. Образцы располагались в центре сверхпроводящего соленоида в криомагнитной вставке в транспортном гелиевом сосуде Дьюара СТГ-40. Измерения спектров поглощения проводились при

Таблица 1. Параметры образцов.

NºNº	x	d _{Ge} , Å	d _{GeSi} , Å	деформация в Ge, ε _{xx}	
306a	0.12	200	260	$2.2 \cdot 10^{-3}$	
308a	0.09	350	160	$4.4 \cdot 10^{-4}$	
308b	0.09	330	150	$4.4 \cdot 10^{-4}$	

Рис. 1. Осцилограммы импульсов магнитопоглощения в структуре 306а, измеренные при различных магнитных полях ($\tau_{имп} = 100 \text{ мкс}, T = 1 \text{ мс}$), $\hbar \omega = 2.53 \text{ мэB}$.

Рис. 2. Спектры магнитопоглощения в образце 306а в конце импульса возбуждения ($\tau_{\text{имп}} = 100 \text{ мкс}, T = 1 \text{ мс}$) (1) и через 40 мкс после его окончания (2) (кривые); $\hbar\omega = 2.53$ мэВ. Точки – значения времен релаксации. Сплошные области показывают доли сигналов с «быстрым» (τ_1) (серая) и медленным (τ_2) (белая) временами.

T = 4.2 К при постоянной частоте излучения и развертке магнитного поля. В качестве источни-ков излучения использовались лампы обратной

Рис. 3. Спектр магнитопоглощения в образце 308а в конце импульса возбуждения ($\tau_{\rm имп} = 100$ мкс, T = 10 мс). $\hbar \omega = 1.77$ мэВ. Точки – значения времен релаксации. Сплошные области показывают соотношение времен τ_1 (серая) и τ_2 (белая). На вставке: типичная осциллограмма сигнала (B = 23 кЭ) и ее аппроксимация с помощью суммы двух экспонент.

волны (ЛОВ), перекрывающие диапазон частот 200 – 710 ГГц. Свободные носители в образце создавались излучением GaAs светодиода ($\lambda \approx 0.9$ мкм). Прошедшее через структуру излучение детектировалось кристаллом n-InSb. Для измерений с временным разрешением сигнала при импульсном оптическом возбуждении для регистрации сигнала как функции магнитного поля использовался многоканальный цифровой осциллограф "Tektronix" TDS3034B. Параметры образцов представлены в табл. 1.

Результаты и обсуждение

Типичный спектр магнитопоглощения в образце 306а представлен на рис.1. Хорошо видны линии циклотронного резонанса (ЦР) дырок (CH₁ и Ch₁), а также линии примесного поглощения A^1 и A^2 , связанные с переходом $1s \rightarrow 2p^+$ нейтрального акцептора, находящегося в центре барьера GeSi, и на гетерогранице соответственно [3]. Хорошо видно что релаксация линии ЦР дырок CH₁ происходит заметно быстрее, чем релаксация примесной линии A^2 .

На вставке на рис. 3 представлена типичная осциллограмма сигнала магнитопоглощения в полулогарифмическом масштабе. После выключения импульса подсветки релаксация сигнала может быть описана с помощью суммы двух экспонент $Ae^{-t/\tau 1} + Be^{-t/\tau 2}$ ($\tau_2 >> \tau_1$).

Зависимость времён τ_1 и τ_2 от магнитного поля показывает, что для циклотронных линий преобладает «быстрая» релаксация, а для примесных «медленная». Отметим, что значения «быстрого» времени τ_1 варьируются (для разных образцов) от единиц до десятков мкс, что, по крайней мере, на порядок выше, чем время рекомбинации свободных носителей заряда в объемном Ge.

По-видимому, это вызвано пространственным разделением электронов и дырок, вызванным встроенным электрическим полем (связанное возможно с пиннингом уровня Ферми в запрещенной зоне на поверхности образца), кото-

Рис. 4. Спектры магнитопоглощения в образце 308b в конце импульса возбуждения ($\tau_{имп} = 330 \text{ мкс}, T = 10 \text{ мс}$) (1), через 40 мкс (2) и 79 мкс (3) после его окончания. $\hbar \omega = 2.43$ мэВ. Точки – значения времен релаксации. Сплошные области показывают соотношение времен τ_1 (серая) и τ_2 (белая).

рое отличается для разных образцов. Вариации этого поля могут быть причиной некоторого различия во временах τ_1 и τ_2 для образцов 308a,b, выращенных на разных подложках – рис. 3, 4. Данное поле разделяет фотовозбужденные электроны и дырки. Поэтому при импульсной подсветке большая часть электронов и дырок будет захватываться на ионизованные примеси, в то время как остальные носители будут оставаться свободными.

После выключения импульса подсветки свободные носители могут быстро (вследствие достаточной подвижности) встретиться и прорекомбинировать с носителями противоположного знака, локализованными на примесях, что приводит к быстрой релаксации. Как видно на рис. 2, 4, интенсивности линий ЦР быстро спадают, в то время как интенсивности примесных линий меняется незначительно. На втором этапе релаксация интенсивностей всех линий проходит с характерным временем $\tau_2 >> \tau_1$. На этом «медленном» этапе свободные дырки возникают в результате термоионизции мелких акцепторов, а затем происходит их рекомбинация на нейтральных донорах. Сводные же электроны практически не возникают, поскольку энергия связи мелких доноров в образце существенно больше, чем энергия связи акцепторов, и при температуре жидкого гелия они практически не термоионизуются. Это приводит к исчезновению линии CE_{1L} после выключения подсветки, в то время как линия СН₁ все еще присутствует.

При поддержке РФФИ 03-02-16808 и РАН.

[1] В. Я. Алешкин, А. В. Антонов, Д. Б. Векслер и др. ФТТ, **47**, 74 (2005).

[2] В. И. Гавриленко, И. В. Ерофеева и др. Письма ЖЭТФ, **65**, 194 (1997).

[3] В. Я. Алешкин, А. В. Антонов, В. И. Гавриленко и др. Материалы симпозиума «Нанофизика и наноэлектроника» Нижний Новгород, 2005, с. 397.

Spectral characteristics of heterostructures in the GaInAsSb–AlGaAsSb– GaSb system

A.A. Afonenko¹, <u>V.K. Kononenko</u>², P. Christol³, A. Joullié³

¹ Belarussian State University, Fr. Scorina Ave., 4, 220050 Minsk, Belarus
 ² Stepanov Institute of Physics NASB, Fr. Scorina Ave., 70, 220072 Minsk, Belarus
 ³ Université de Montpellier II, 34095 Montpellier Cedex 05, France

e-mail: lavik@dragon.bas-net.by

Laser diodes emitting at room temperature in continuous wave regime in the $2-3\,\mu$ m spectral domain are needed for high sensitivity gas analysis by tunable diode laser absorption spectroscopy and environmental monitoring. The most suitable sources for optimal operation at these wavelengths are the GaSb-based quantum-well (QW) heterostructure laser diodes [1].

Adequate description of the output power performance and spectral characteristics of tunable QW heterostructure lasers demands the taking into account emission line broadening effects. In the present paper, the analysis of the emission line broadening in QW lasers is carried out including the Coulomb interaction of current carriers in the active region. The used method consists in the determination by the perturbation theory for manybody systems the functional dependence of tails of the emission line and in the subsequent extrapolation of the central part of the line using the normalization [2]. In such a way, an explanation of the emission line asymmetry and the half-width change at variations of temperature and power excitation, can be obtained.

Conclusions concerning features of the spectral line are as follows [3]. (i) The longwavelength side (at the deep tails) decays more slowly than the short-wavelength one. The asymmetric exponential character of the line tails is associated with the statistics of the current carriers distribution over the energy levels and with the fulfillment of the energy and momentum conservation at interactions. (ii) The emission line becomes wider at increasing the power excitation. It is expressed by the fact that the integrated intensity of the emission grows exponentially as the quasi-Fermi level difference and the emission intensity at the tails grows in one and half greater degree, i.e., the line is widen due to anticipating growth of the rate of processes involving three particles at the transfer of the excess momentum in the Coulomb interactions. (iii) The asymmetry of the emission line is more essential at low temperatures, where equality of the range of many-body energy level splitting and thermal energy is realized at a smaller relative excitation level.

The detail calculations of the emission spectra are carried out for the laser diodes in the GaInAsSb–AlGaAsSb–GaSb system including the Coulomb interaction of current carriers spectral broadening mechanism. The basic laser structure was defined for growth on the GaSb substrate. The active region (which can be as an asymmetric multiple-QW heterostructure) is at the center of an undoped $Al_{0.35}Ga_{0.65}As_{0.03}Sb_{0.97}$ waveguide layer, and sandwiched between two $Al_{0.90}Ga_{0.10}As_{0.08}Sb_{0.92}$ cladding layers ensuring optical confinement. These quaternary alloys are lattice matched to the substrate. A thin highly doped *p*-type GaSb cap layer is placed for ensuring ohmic contact.

The basic parameters of the materials for analysis of spectral characteristics of the laser diodes have been determined for unstrained (structure No. 1) and strained (structure No. 2) QW heterostructures. For the Al_{0.35}Ga_{0.65}As_{0.03}Sb_{0.97} barrier layers we have $E_g = 1.167 \text{ eV}$, $\tilde{a}_1 = 10.48$, $\tilde{a}_2 = 3.46$, $m_{\rm cb} = 0.075 m_0$, $m_{\rm vhb} = 0.281 m_0$, $m_{\rm v1b} = 0.057 \, m_0.$ In structure No. 1 the Ga_{0.60}In_{0.40}As_{0.36}Sb_{0.64} QWs characterizes by parameters $E_g = 0.369 \text{ eV}$, $\tilde{a}_1 = 16.57$, $\tilde{a}_2 = 6.47$, $m_{\rm c} = 0.033 m_0$, $m_{\rm vh} = 0.276 m_0$, $m_{\rm vl} = 0.034 m_0$ $m_{\rm vht} = 0.043 m_0, m_{\rm vlt} = 0.099 m_0, \Delta E_{\rm c} = 0.519 \text{ eV}, \text{ and}$ $\Delta E_{\rm v} = 0.279 \text{ eV}.$ In structure No. 2 the Ga_{0.45}In_{0.55}As_{0.20}Sb_{0.80} QWs characterizes bv $E_{g} = 0.355 \,\mathrm{eV}, \ \tilde{a}_{1} = 22.96, \ \tilde{a}_{2} = 9.63, \ m_{c} = 0.029 \,m_{0},$ $m_{\rm vh} = 0.263m_0, \qquad m_{\rm vl} = 0.024m_0, \qquad m_{\rm vht} = 0.031m_0,$ $m_{\rm vlt} = 0.075 m_0, \quad \Delta E_{\rm c} = 0.737 \,{\rm eV}, \quad \Delta E_{\rm v} = 0.075 \,{\rm eV}.$ The band offsets $\Delta E_{\rm c}$ and $\Delta E_{\rm v}$ in the conduction and valence bands were found by using the procedure [4], which consists in interpolate binary heterointerface values of reference and then calculate the shifts due to strain.

According to the calculations it is established that in the structures with the active region to be lattice-matched to the GaSb substrate the main contribution into the emission is introduced by transitions through heavy hole states (Fig. 1). In the laser structures having strained active regions the main contribution into the emission is provided by transitions via light hole states.

New designed laser structures which contain QWs of different widths d (from 5 to 10 nm) are suggested. Due to asymmetric multiple-QW heterostructure configuration the spectral emission diapason overlaps 2.2–2.9 µm. Carried out evaluations give values of the minimum possible threshold current densities for the structures with

d = 10 nm and emitting near (structure No. 1) 2.63 and (structure No. 2) 2.76 µm as 36 and 19 A/cm² respectively. The features of the emission line (Fig. 2) are generally in accordance with experimental results for similar sources. Some difference can be attributed to fluctuations in the QW widths and component compositions.

Comparison calculation of the tuning characteristics of QW lasers at room temperature has been performed in dependence on number and width of QWs, and on different designs. All simulated structures have the Al_{0.90}Ga_{0.10}As_{0.08}Sb_{0.92} cladding layers, Al_{0.40}Ga_{0.60}As_{0.06}Sb_{0.94} waveguide layers, and Ga_{0.36}In_{0.64}As_{0.13}Sb_{0.87} QWs. The active region includes single or two QWs with the same or

Fig. 1 Spectrum of spontaneous recombination $r_{sp}(v)$ (in a. u.) versus the excitation level Δ (figures at the curves) for laser structure No. 1 near the threshold, $v = (hv - hv_{11})/kT$, hv is the photon energy, hv_{11} is the optical transition energy, kT is the thermal energy.

Fig. 3 Gain spectrum of the laser structure with asymmetric QWs (7 and 13 nm) at current density $j = 300 \text{ A/cm}^2$, $g_{\text{tot}} = g_1 + g_2$ is the modal gain, g_1 is the gain in the broad QW, g_2 is the gain in the narrow QW.

Use of asymmetric QW heterostructures allows to widen the gain spectrum with respect to single QW structure at low current density (Fig. 3) and to approach the tuning curve of symmetric QW structure at high current density. Additionally, the output power versus the tuning wavelength $S(\lambda)$ of the asymmetric QW heterostructure has the most flat profile (Fig. 4). Performed calculations show the enhancement in the tuning parameters of QW lasers. In asymmetric multiple-QW laser structures it is also possible to restrain Auger recombination different width from 7 to 13 nm. It is assumed, that wavelength selection is performed by an external cavity.

At low current density (300 A/cm^2) the injection efficiency is enough high for all simulated structures. At increasing the current density (up to 600 A/cm^2) the injection efficiency in single QW structure decreases (from 0.86 to 0.59) and the widest wavelength tuning range is achieved in the symmetric structure, where the injection efficiency changes from 0.98 to 0.90. At chosen parameters the injection efficiency in the asymmetric QW heterostructure decreases from 0.96 to 0.78 when the pump current density changes from 300 to 600 A/cm^2 .

Fig. 2 The effective broadening parameter Γ versus Δ at different temperatures T = (1) 300, (2) 80, and (3)

4 K for laser structure No. 1 near the threshold, $\Delta = (\Delta F - hv_{11})/2kT$, ΔF is the quasi-Fermi level difference, hv_{11} is the optical transition energy.

Fig. 4 Sheet photon density *S* in the cavity versus lasing wavelength λ at loss $k_{\text{th}} = 30 \text{ cm}^{-1}$ and current density $j = 600 \text{ A/cm}^2$, (1) single QW (13 nm), (2) two QWs (13 nm), (3) asymmetric QWs (7 and 13 nm).

predominance in the threshold at high temperature operation.

[1] Joullié, A. and Christol, P., C. R. Physique, **4**, 621 (2003).

[2] Afonenko, A. A., Semiconductors, **38**, 335 (2004).

[3] Afonenko, A. A. and Kononenko, V. K.,

Physica E, 28, 556 (2005).

[4] Christol, P., El Gazouli, M., Bigenwald, P. and Joullié, A., Physica E, **14**, 375 (2002).

Люминесцентные свойства легированных эрбием структур на основе кремния в условиях сильного оптического возбуждения

<u>Л.В.Красильникова¹</u>, Д.М.Жигунов², О.А.Шалыгина², В.Ю.Тимошенко²,

М.В.Степихова¹, В.Г. Шенгуров³, З.Ф.Красильник¹ ¹Институт физики микроструктур РАН, Нижний Новгород, 603950 Россия ² МГУ им. М.В.Ломоносова, физический факультет, Москва, 119992 Россия

³ Научно-исследовательский физико-технический институт ННГУ им. Н.И.Лобачевского,

Нижний Новгород, 603950 Россия

e-mail: luda@ipm.sci-nnov.ru

Легирование примесью эрбия является одним из методов, позволяющих создавать эффективные светоизлучающие структуры на кремнии. В настоящее время на основе кремния, легированного эрбием (Si:Er), разработан целый ряд приборных структур, работающих в диапазоне температур от 4.2 до 300 К [1]. Более того, как показывают результаты анализа, коэффициент оптического усиления в структурах Si:Er с выделенным типом оптически активных центров может достигать значительной величины, ~30 см⁻¹ [2], что позволяет говорить о перспективах создания лазера.

Необходимым условием для создания лазерных структур на Si:Er является формирование волновода, обеспечивающего локализацию излучения в активном слое, а также условие инверсной населенности энергетических уровней иона Ег³⁺ при оптической (или электрической) накачке. Одним из возможных вариантов создания волновода является использование гетероструктур Si/Si1-xGex:Er/Si с активным волноведущим каналом Si_{1-x}Ge_x:Er. Показатель преломления слоев Si_{1-X}Ge_X зависит от содержания германия (x) и может варьироваться в широких пределах, позволяя таким образом формировать эффективный волновод с сильной локализацией мод в активном слое [3].

В данной работе приводится оценка квантовой эффективности структур Si/Si1-xGex:Er/Si, разрабатываемых с целью создания лазера. Исследованы люминесцентные свойства структур в условиях сильного оптического возбуждения (интенсивность возбуждения ≤10 Вт/см²), где особое внимание уделялось анализу кинетики фотолюминесценции (ФЛ) и условиям наблюдения инверсной населенности энергетических уровней иона Er³⁺ при оптической накачке.

Исследуемые структуры Si/Si_{1-X}Ge_X:Er/Si были выращены методом сублимационной молекулярно-лучевой эпитаксии в атмосфере германа. Образцы выращивались на подложках Si (100) при температуре роста 500°С. При формировании активного слоя поток атомов Er создавался испарением источника поликристаллического Si, легированного данной примесью. Поступление германия в активный слой осуществлялось за счет пиролиза GeH4 на поверхности разогреваемой током подложки. Детально методика роста описана в работе [4]. Структурные свойства и элементный состав выращенных слоев анализировались методами рентгеновской вторичной ионной лифракции И массспектрометрии. Как показали результаты исследований, распределение примеси эрбия в слое Si_{1-X}Ge_X:Ег носит однородный характер с концентрацией ~ $(0.7-2) \cdot 10^{18}$ см³. Содержание Ge в структурах варьировалось от 10 до 30%, толщины волноведущих слоев - 0.1 ÷ 2.3 мкм. Величина остаточных упругих напряжений в структурах изменялась в диапазоне от 100 до 1 %.

Выращенные структуры Si/Si1-XGeX:Er/Si характеризуются интенсивным сигналом ФЛ на длине волны 1.54 мкм, где основной вклад в люминесцентный отклик вносят оптически активные центры и комплексы иона эрбия с кислородом [5]. Как показывалось ранее, сигнал ФЛ структур практически не зависит от степени релаксации слоя Si_{1-x}Ge_x:Er и определяется его толщиной. Для оценки квантовой эффективности фотолюминесценции в данной работе были проведены сравнительные измерения структур Si/Si_{1-X}Ge_X:Er/Si с эталонной структурой Si/Si:Er (значения квантовой эффективности последней приводятся в работах [2,6]). Значения внешней квантовой эффективности, полученные для одной из наиболее эффективных структур Si/Si1. $_X$ Ge_X:Er/Si (x = 0.27, d_{SiGe:Er} = 2.3 мкм), совместно с результатами исследований структур Si/Si:Er, показаны на рис. 1. Как видно из рисунка, структуры Si/Si1-XGeX:Er/Si сравнимы по величине внешней квантовой эффективности (η_{ext}) с наиболее эффективными структурами Si/Si:Er. При температуре 4.2 К и мощности возбуждающего излучения 14 мВт, значение η_{ext} для структуры Si/Si_{0.73}Ge_{0.27}:Er/Si составило ~0.16 %. Учитывая потери на вывод излучения и пренебрегая безизлучательными потерями в активном слое, как это было проделано в работе [6], можно оценить внутреннюю квантовую эффективность структур. При температуре 4.2 К и мощности возбуждения 14 мВт, внутренняя квантовая эффективность структур Si/Si1-XGeX:Er/Si оценивается величиной ~10%.

Для анализа относительной концентрации ионов Er³⁺ в возбужденном состоянии в работе исследовалась кинетика сигнала ФЛ. Можно показать, что число ионов Er³⁺, находящихся в воз-

Рис. 1 Зависимости внешней квантовой эффективности ФЛ структур Si/Si_{1-X}Ge_X:Er/Si (\blacktriangle и •) и Si/Si:Er (Δ , \circ и \diamond - по результатам [6,7]) от мощности возбуждающего излучения. Данные получены при температурах 4.2, 15 и 77 К.

буждённом состоянии (N_l), непосредственно связано с соотношением времен нарастания (τ_{rise}) и спада (τ_{decay}) сигнала ФЛ. Решая кинетическое уравнение для ионов Er^{3+} и учитывая, что $\tau_{rise}^{-1} = \mathrm{g} + \tau_{decay}^{-1}$, где g – вероятность возбуждения, относительная концентрация ионов Er^{3+} в возбужденном состоянии может быть записана в виде:

$$N_1 / N_{Er}^0 = g \times \tau_{rise} = 1 - \tau_{rise} / \tau_{decay},$$
 (1)

где N_{Er}^{0} – полная концентрация оптически активных ионов эрбия. Соотношение $N_I/N_{Er}^{0} = 0.5$ соответствует порогу инверсной населенности энергетических уровней иона Er^{3+} .

Результаты кинетических измерений ФЛ, полученные для структур Si/Si_{1-X}Ge_X:Er/Si при разных уровнях возбуждения показаны на рис.2 (приведена структура с x = 0.26, $d_{SiGe:Er} = 1.1$ мкм). Как видно из рисунка, с увеличением интенсивности возбуждения, наблюдается резкое уменьшение времен нарастания сигнала ФЛ при относительно малом изменении времен спада. Расчеты, проведенные по формуле (1) показали, что в структуре имеет место инверсия населенностей энергетических уровней иона Er³⁺ (рис.3). Отно-сительная концентрация ионов Er³⁺ в возбужденном состоянии превышает инверсионный порог при значениях интенсивности возбуждения ~0.2 Вт/см² и достигает максимума (~80% от полной концентрации ионов эрбия) при 4 Вт/см². Инверсия населенностей в структуре наблюдается при уровнях возбуждения, при которых наступает насыщение сигнала ФЛ.

Таким образом, проведенные исследования показали высокую квантовую эффективность разрабатываемых структур Si/Si_{1-X}Ge_X:Er/Si. При высоких уровнях оптического возбуждения в структурах наблюдается инверсия населенностей энергетических уровней иона Er³⁺. Относительная концентрация ионов эрбия в возбужденном

Рис. 2 Кинетика нарастания и спада сигнала ФЛ на длине волны 1.54 мкм при интенсивностях возбуждения 0.005 (сплошные кривые) и 0.2 Вт/см² (пунктирные кривые). На вставке приведен импульс возбуждающего излучения и временной отклик сигнала ФЛ.

Рис. 3 Зависимость относительной концентрации ионов Er^{3+} в возбужденном состоянии от интенсивности возбуждения, полученная для структуры Si/Si_{0.74}Ge_{0.26}:Er/Si.

состоянии может достигать 80% от полной концентрации редкоземельной примеси.

Работа выполнена при поддержке РФФИ (проекты #04-02-17120, #04-02-08240офи_а) и INTAS (проект #03-51-6486).

Silicon-based optoelectronics ed. by S. Coffa, L. Tsybeskov, MRS Bulletin, vol.23, iss.4, p.16 (1998).
 Z.F. Krasilnik, V.Ya. Aleshkin, B.A. Andreev et al. *in Towards the First Silicon Laser*, ed. by L. Pavesi, S. Gaponenko, L. Dal Negro, NATO Science Series, vol.93, (Dortrecht: Kluwer), p.445 (2003).
 J.B. Красильникова, М.В. Степихова, А.А. Дубинов и др. Сборник симпозиума "Нанофизика и наноэлектроника 2005", т.2, с.437 (2005).
 С.П. Светлов, В.Г. Шенгуров, В.Ю. Чалков и др. Изв. РАН. Сер. Физ. т.65, вып.2, с.203 (2001).
 M.V. Stepikhova, L.V. Krasil'nikova, Z.F. Krasil'nik et al. J. Opt. Mat. (2006) – *in print*.
 Б.А. Андреев, Т. Грегоркиевич, З.Ф. Красильники и др. Изв. РАН. Сер. Физ. т.67, риц.2, с.273

ник и др. Изв. РАН. Сер. Физ., т.67, вып.2, с.273 (2003).

[7] F. Priolo, G. Franzò, S. Coffa, A. Carnera. Phys. Rev. B. vol.57, p.4443 (1998).

Сравнительный анализ фотолюминесценции GeSi/Si(001) самоформирующихся наноостровков и дефектов кристаллической решётки.

Ю.Н.Дроздов, З.Ф.Красильник, <u>Д.Н.Лобанов</u>, А.В.Новиков, М.В.Шалеев, Д.В.Шенгуров, А.Н.Яблонский

Институт физики микроструктур РАН, Нижний Новгород, 603950, ГСП-105, Россия e-mail: <u>dima@ipm.sci-nnov.ru</u>

Одной трудностей из основных исследования фотолюминесценции (ФЛ) структур с SiGe/Si(001) самоформирующимися островками является ΦЛ от дефектов кристаллической решетки кремнии, в наблюдаемая в той же области длин волн (1,3÷2 μм), в которой присутствует сигнал ФЛ от островков. Этот факт затрудняет однозначную интерпретацию спектров ΦЛ структур с GeSi/Si(001) самоформирующимися наноостровками. В этой связи стоит задача установления критериев, позволяющих однозначной установить природу сигнала ФЛ в области длин волн 1,3÷2 мкм в Ge/Si гетероструктурах. В данной работе проводятся сравнительного результаты анализа люминесцентных свойств GeSi/Si(001) самоформирующимися гетероструктур с наноостровками и дефектами кристаллической решетки в зависимости от мощности накачки и температуры измерения. Также рассматривается эволюция спектров ΦЛ структур с самоформирующимися наноостровками И дефектами кристаллической решетки при отжиге структур.

спектров ΦЛ Исследования показали различный характер зависимости от мощности оптической накачки сигнала ФЛ от Ge(Si) самоформирующихся островков и от дефектов кристаллической На рисунке решетки. 1a представлены спектры ΦЛ структуры с релаксированным градиентным слоем Ge_xSi_{1-x} с концентрацией Ge в верхнем слое 20% и суммарной толщиной 1.65 мкм, измеренные при различных мощностях накачки при температуре 77 К. В этой структуре при температуре 77 К наиболее интенсивно светится связанная с дислокациями линия D1 (рис. 1а). Из рисунка 1а можно видеть, что с увеличением мощности накачки положение линии D1 в спектре ФЛ практически не изменяется. Дело в том, что ФЛ как от дислокаций, так и от примесных комплексов с точки зрения зонной теории связана с рекомбинацией носителей с глубоких уровней в запрещённой зоне. Положение этих уровней в запрещённой зоне при неизменной фиксировано, температуре измерения что приводит к отсутствию зависимости положения линии D1 от мощности оптической накачки. Для структур с островками с увеличением мощности

накачки происходит сдвиг максимума сигнала ФЛ от островков в область больших энергий (рис. 16). Зависимость сигнала ФЛ, связанного с островками, от мощности оптической накачки вызвана многочастичными эффектами в островках. При увеличении мощности накачки происходит рост заселенности дырками верхних энергетических уровней в островках и их рекомбинация с этих уровней (рис. 2).

Рис. 1. Зависимость сигнала ФЛ от мощности оптической накачки (а) для релаксированного Ge_{0.2}Si_{0.8} слоя, и (б) для структуры с островками, выращенными при $T_p = 700^{\circ}$ C. Спектры нормированы на амплитуду сигнала ОТ дислокаций и островков соответственно Спектры записаны при 77 К, с использованием Ar⁺ лазера для возбуждения спектров и Ge приемника для их регистрации. Цифрами на рисунках показана мощность излучения лазера оптической накачки. D1 – дислокационная линия ФЛ.

При увеличении мощности накачки происходит рост заселенности дырками верхних энергетических уровней в островках и их рекомбинация с этих уровней (рис. 2). Кроме этого к росту энергии оптического перехода в островках приводит увеличение изгиба энергетических зон, вызванного кулоновским потенциалом дырок, локализованных в островках [1].

Рис. 2. Модель оптического перехода в островках. Пунктирные линии соответствуют изменению зонной диаграммы при увеличении мощности оптической накачки.

На рисунке 3 представлены спектры ФЛ GeSi структур с дислокациями (рис. 3a) и самоформирующимися островками (рис 3б), снятые при различных температурах. Из этого рисунка можно видеть, что линии ФЛ, связанные с рекомбинацией свободного экситона в Si и с рекомбинацией на дислокациях (линия D1 на рис. За), при увеличении температуры измерения с 77 К до 300 К смещаются в область меньших энергий на 36 мэВ. Смещение сигналов ФЛ, связанных с объёмным Si и дислокациями, вызвано температурным уменьшением ширины запрещенной зоны Si. В то же время положение линии ФЛ от островков слабо зависит от температуры (рис 3б). Аналогично случаю с увеличением мощности накачки, с увеличением измерения происходит температуры рост заселенности дырками верхних энергетических уровней в островках и увеличение изгиба энергетических зон, вызванного кулоновским потенциалом дырок, локализованных в островках [1]. Эти эффекты приводят к увеличению энергии оптического перехода в островках, которое частично компенсирует уменьшение ширины запрещенной зоны при увеличении температуры измерения, что приводит к слабой зависимости положения сигнала ФЛ от островков температуры измерения.

Эксперименты по влиянию отжига структур с GeSi самоформирующимися островками и дислокациями несоответствия на их спектры ФЛ показали, что с увеличением температуры отжига происходит смещение сигнала ФЛ от островков в сторону больших энергий. Данное смещение происходит в результате диффузионного перемешивания атомов и, как следствие, уменьшение доли Ge в островках в процессе отжига. Положение сигнала ФЛ от дислокаций несоответствия не меняется при отжиге структур, так как он связан дислокационными уровнями в запрещённой зоне, положение которых не зависит от температуры отжига.

Рис. 3. Спектры $\Phi Л$ (а) для структуры с релаксированным $Ge_{0.2}Si_{0.8}$ слоем, и (б) для структуры с наноостровками, выращенными при $T_p=700^{0}$ С, снятые при 77 К и 300 К. Спектры $\Phi Л$ нормированы на максимум пика $\Phi Л$ от дислокаций (а) или островков (б). Для возбуждения спектров использовался Kr⁺ лазер. Спектры $\Phi Л$ зарегистрированы Ge приёмником.

работе Таким образом, в провелён сравнительный анализ сигнала ФЛ от Ge(Si) самоформирующихся островков и от дефектов кристаллической решетки. Показан различный характер зависимости от мощности оптической накачки сигнала ΦЛ от Ge(Si) самоформирующихся островков и от дефектов кристаллической решетки. Продемонстрировано, что сигналы ФЛ от Ge(Si) самоформирующихся островков и от дефектов кристаллической решетки имеют различный характер температурной зависимости. Показано, что отжиг структур оказывает разное влияние на положение сигнала ФЛ от островков и от дефектов кристаллической решётки.

Работа выполнена при финансовой поддержке РФФИ (грант № 05-02-17336-а), программы BRHE (проект Y1 P-01-05) и программ Российской АН.

[1] C.-K. Sun, G. Wang, J. E. Bowers, B. Brar, H.-R. Blank, H. Kroemer, and M. H. Pilkuhn, Appl. Phys. Lett. **68**, 1543 (1996)

Электронно-дырочная рекомбинация на ловушках, связанных с эрбий-кислородными комплексами в кремнии

С.А.Кривелевич, М.И.Маковийчук, Р.В.Селюков

Институт микроэлектроники и информатики РАН, ул. Университетская 21, Ярославль, Россия.

e-mail:makmi@imras.net76.ru

Легирование кремния эрбием и кислородом является одной из возможностей создания светоизлучающих приборов, формируемых в микроэлектронной рамках технологии. Оптически активный центр в данной структуре представляет собой ион эрбия, окруженный атомами кислорода. Электролюминесценция (ЭЛ) в таком материале возникает за счет излучательных переходов электронов между 4fсостояниями редкоземельного иона. Наиболее эрбиевая ЭЛ в интенсивная кремнии наблюдалась при пробое сформированного в такой структуре p-n-перехода [1], когда происходит возбуждение по ударному механизму горячими носителями. Одной из причин крайне низкой интенсивности ЭЛ этих структур является Оже-девозбуждение центра с участием свободных электронов [2]. В данной работе рассматривается возможность снижения эффективности этого процесса посредством захвата электронов на ловушки, связанные с эрбий-кислородными комплексами. Это снизит величину сечения девозбуждения из-за отталкивающего кулоновского потенциала центра. Однако, так как при пробое р-п-перехода плотность тока дырок, как и плотность тока значительна, что приводит к электронов, интенсивной рекомбинации электроннодырочных пар на ловушках, а, следовательно, к обратному изменению зарядового состояния центра. В данной работе проведен расчет сечений захвата электрона и рекомбинации.

Рис.1 Энергетическая диаграмма кластера Er/SiO₂

Во многих исследованиях, в том числе в работе [3], был идентифицирован содержащий эрбий излучающий центр, представляющий собой трехзарядный ион эрбия. окруженный шестью атомами кислорода, которые в свою очередь образуют валентные связи с атомами кремния; размер всего кластера составляет 10-12 Å. Таким образом, можно говорить об образовании кластера Er-Si-O, где комплексы Si-О составят оболочку иона эрбия. В данной работе предлагается рассмотреть этот комплекс как ион эрбия В окружении SiO₂. Аппроксимировать искажение кристаллического поля, создаваемое данным комплексом, можно симметричным сферически прямоугольным потенциальным барьером для дырок, который является квантовой ямой для валентных Для электронов проводимости электронов. барьер на границе Si/SiO₂ предполагается Энергетическая туннельно прозрачным. диаграмма такой структуры изображена на рис.1. Здесь a1 – радиус иона эрбия, a1=0.89 Å, a2 – радиус кластера, a2=6 Å. Потенциальная энергия при r<a1 принимается равной бесконечности в силу занятости всех электронных состояний в ионе эрбия. В качестве глубины ямы рационально выбрать величину высоты барьера на границе раздела Si/SiO₂, равную 3.1 эВ.

Радиальные составляющие волновых функций свободного и локализованного на уровне электрона являются решениями уравнения Шредингера (1) [4]:

$$\mathbf{R}_{1}'' + \frac{2}{r}\mathbf{R}_{1}' + \left\lfloor \frac{2m^{*}}{\hbar^{2}} \left(\mathbf{E} - \mathbf{U}(\mathbf{r}) \right) - \frac{\mathbf{l}(\mathbf{l}+1)}{r^{2}} \right\rfloor \mathbf{R}_{1} = 0 \ (1)$$

Здесь Е – энергия электрона, m^{*} - эффективная масса электрона, l – орбитальное квантовое число. Для данных параметров в квантовой яме оказалось три уровня, обусловленных наличием s, p, и d-состояний с глубинами 2.14, 1.58 и 0.69 эВ соответственно. Само сечение можно вычислить в рамках теории возмущений. В данном случае вероятность перехода в состояние дискретного спектра в единицу времени определяется выражением (2):

$$P = \frac{1}{T} \frac{1}{\hbar^2} \left| \int_{0}^{T} U_{fi} e^{-i\omega t} dt \right|^2$$
(2)

Здесь T – время действия возмущения, $U_{\rm fi}$ – матричный элемент перехода электрона из начального состояния і в конечное состояние f, ω – частота, соответствующая разности энергий между начальным и конечным состояниями

электрона; $U_{\rm fi}$ определяется следующим выражением:

$$U_{fi} = \int \varphi_f^* U(r) \varphi_i d^3 r \tag{3}$$

Зависимость U(r) определяется из рис. 1, ϕ_i – волновая функция электрона в начальном состоянии, ϕ_f – волновая функция локализованного состояния электрона.

Рис.2 Зависимость сечения захвата от энергии электрона для разных квантовых чисел l.

Переход в формуле (2) от вероятности к сечению σ достигается перенормировкой волновой функции начального состояния так, чтобы ее поток вероятности был равен единице. На рис. 2 представлена вычисленная по предложенному методу зависимость сечения от энергии захватываемого электрона.

Сечение рекомбинации на центре можно вычислить как произведение сечения захвата свободной дырки на связанное состояние центра и вероятности рекомбинации связанной дырки с локализованным электроном. Наличие таких состояний для дырок обусловлено кулоновским притягивающим потенциалом центра. Сечение захвата на такую ловушку можно оценить как сечение с радиусом, равным половине расстояния между центрами:

$$\sigma_{\rm cant} \approx \pi n^{-2/3} \tag{4}$$

Где n – концентрация оптически активных центров.

Вероятность того, что рекомбинация локализованной дырки и локализованного электрона произойдет за некоторое время t нужно рассматривать как произведение вероятности того, что за это время не произойдет термического выброса дырки и непосредственно вероятности рекомбинации. Первая величина дается формулой:

$$P_{s} = e^{-t/\tau_{gen}}$$
(5)

Здесь 1/т_{gen} – вероятность тепловой генерации из связанного состояния центра в единицу времени в любое из состояний валентной зоны.

Вероятность рекомбинации, нормированная на единицу, имеет вид:

$$P_{\rm rec} = 1 - e^{-t/\tau_{\rm rec}} \tag{6}$$

1/т_{гес} – вероятность рекомбинации в единицу времени. Эту величину можно оценить как произведение вероятности рекомбинации локализованных электрона и дырки, имеющих одинаковую энергию на вероятность того, что дырка приобретет энергию, необходимую для достижения этого равенства:

$$1/\tau_{\rm rec} = t \frac{|U_{\rm fi}|^2}{\hbar^2} e^{-\frac{E_{\rm el} - E_{\rm hl} - \Delta U}{kT}}$$
(7)

 E_{el} – энергия локализованного электрона, E_{hl} - энергия локализованной дырки, ΔU – энергия электрического поля, локализованного электрона, t – время действия возмущения. Так как в качестве возмущения выступает кулоновское взаимодействие электрона и дырки, то матричный элемент U_{fi} определяется выражением:

$$U_{fi} = \int \phi_e^* \frac{e^2}{4\pi\epsilon\epsilon_0 r} \phi_h dV$$
 (8)

Здесь φe И _ волновые функции ϕ_h локализованных электрона дырки И соответственно. Среднее действия время возмущения t определяется длительностью наиболее быстрого процесса: термической генерации или рекомбинации. Проведенные оценки показывают, что сечение рекомбинации весьма велико и по порядку величины соответствует сечениям захвата на кулоновские притягивающие ловушки в кремнии, т. е. 10⁻¹⁴ -10⁻¹³ см².

В работе показана возможность захвата электрона на излучающий центр, что дает право надеяться на использование перезарядки центра для повышения интенсивности ЭЛ структур Si:Er. Однако для применения данного метода предотвратить интенсивную необходимо рекомбинацию электронно-дырочных пар на оптически активных центрах, так как сечение рекомбинации также оказывается значительным. можно сделать, максимально снизив Это величину дырочной компоненты тока. Для этого электролюминесцентных приборах, в сформированных на основе Si:Er необходимо использовать режимы работы не приводящие к пробою вместе лавинному И с тем обеспечивающие высокий уровень монополярной инжекции. Примером такого режима может быть активный режим работы биполярного транзистора

[1] Franzo G., Priolo F., Coffa S., Polman A., Carnera A., Appl. Phys. Lett, **64**, 2235 (1994).

[2] Кривелевич С.А., Маковийчук М.И., Селюков Р.В., ФТТ, **47**, 13 (2005).

[3] Мастеров В.Ф., Насрединов Ф.С., Серегин П.П., Теруков Е.И., Мездрогина М.М., ФТП, **32**, 708 (1998).

[4] Ландау Л.Д., Лившиц Е.М. Теоретическая физика. В 10-ти томах. Т.3. Квантовая механика. М.: ФИЗМАТЛИТ. 2002.

GaInAs/AlGaInAs/InP – перспективная система материалов для ИК-фотоприемников с квантовыми ямами

<u>А.А. Мармалюк¹</u>, Ю.А. Рябоштан¹, М.А. Ладугин²

¹ ООО "Сигм Плюс", ул. Введенского, 3, г. Москва, Россия ² Калужский филиал Московского Государственного Технического Университета им. Н.Э. Баумана, ул. Баженова, 4, г. Калуга, Россия e-mail: marm@siplus.ru

Существует ряд задач тепловидения, для решения которых необходимы матричные ИКфотоприемники одновременной с фоточувствительностью спектральных В диапазонах 3-5 и 8-12 мкм. Одним из возможных двухспектральной вариантов реализации чувствительности использование является гетероструктур (ГС) с квантовыми ямами (КЯ) GaAs/AlGaAs (λ =8-12 мкм) и InGaAs/AlGaAs (λ=3-5 мкм). Использование ГС с КЯ благодаря высокому уровню технологий формирования фоточувствительных элементов перспективно для формирования ИК матриц большого формата с высокой однородностью элементов [1]. Получение указанных ГС с КЯ осложняется тем фактом, что система InGaAs/AlGaAs является несогласованной по периоду решетки, тогда как GaAs/AlGaAs полностью согласована. В итоге, КЯ в системе InGaAs/AlGaAs оказываются напряженными до величин, превышающих критические значения для генерации структурных дефектов. Это снижает выходные характеристики ИК-фотоприемников, построенных на их основе. Целесообразным представляется поиск альтернативных систем материалов, позволяющих обеспечить фоточувствительность в заданных диапазонах И быть при этом решетки согласованными по периоду с материалом подложки.

Особый интерес, в этой связи, представляет материалов GaInAs/AlGaInAs система согласованная с подложкой InP. Для получения эпитаксиальных слоев Al_xGa_vIn_{1-x-v}As с высоким структурным совершенством необходимо обеспечить равенство периодов решетки твердого подложки. Это требование раствора И выполняется при у=0.47-0.979х [2]. Твердые растворы Al_xGa_vIn_{1-x-v}As согласованные с InP позволяют варьировать ширину запрещенной зоны от 0.737 эВ (Ga $_{0.47}In_{0.53}As)$ до 1.451 эВ (Al_{0.48}In_{0.52}As) [3]. В системе твердых растворов Al_xGa_vIn_{1-x-v}As разрыв в зоне проводимости составляет $\Delta E_c = 0.72 \Delta E_g$ обеспечивая потенциальную яму для электронов достаточной глубины. Это обстоятельство позволяет надеяться на получение фоточувствительности в рассматриваемых диапазонах λ=3-5 и 8-12 мкм.

В качестве материала квантовой ямы выбран твердый раствор Ga_{0.47}In_{0.53}As согласованный с InP с минимально возможной для Al_xGa_yIn_{1-x-y}As шириной запрещенной зоны. Изменяя состав барьера Al_xGa_yIn_{1-x-y}As согласованного с InP при фиксированной толщине КЯ, определяем величину энергетического зазора между первым и вторым уровнями размерного квантования электронов.

Положение уровней размерного квантования электронов оценивалось в рамках одноэлектронного приближения с рассмотрением случая прямоугольных квантовых ям в соответствии с [4, 5]. Исходные данные для отдельных слоев ГС взяты из [3].

Ha рис. 1 представлена расчетная зависимость положения максимума спектра фоточувствительности для ΓС с КЯ InGaAs/AlGaInAs. Результаты представлены в виде линий уровня для определенной длины волны. Видно, что кривые имеют минимум и в заданный диапазон 8-12 мкм попадает целый набор КЯ. Форма кривых обусловлена различным внутризонных характером электронных переходов.

В районе минимума кривой осуществляется переход с первого уровня на второй уровень, находящийся на одной высоте с барьером. Такой тип переходов позволяет достигнуть максимальной обнаружительной способности [6]. По этой причине из всех возможных сочетаний толщина КЯ-состав барьера целесообразно

Рис.1 Расчетные линии уровня положения максимума фоточувствительности ГС с КЯ InGaAs/AlGaInAs/InP в зависимости от толщины КЯ (d_{QW}) и мольной доли AlAs в барьере Al_xGa_yIn_{1-x-y}As (x).

Рис.2 Расчетные линии уровня положения максимума фоточувствительности ГС с КЯ InGaAs/AlGaInAs/InP в зависимости от толщины КЯ (d_{QW})и мольной доли AlAs в барьере Al_xGa_yIn_{1-x-y}As (x).

выбирать, те из них, которые находятся вблизи минимума соответствующих кривых. Для этого необходимо с высокой точностью и воспроизводимостью управлять толщиной КЯ InGaAs и уровнем их легирования, обеспечивать получение барьерных слоев AlGaInAs заданного состава с высоким структурным совершенством и низкой фоновой концентрацией примесей при максимально резких гетерограницах КЯ. При этом все слои должны быть согласованы по периоду решетки с подложкой InP.

При создании двухспектральных ГС с КЯ важно, чтобы выбранная система материалов позволяла в рамках одного процесса роста обеспечить формирование как коротковолновой, так и длинноволновой секций.

Если получение ГС с КЯ InGaAs, чувствительных в спектральном диапазоне 8-12 мкм, возможно также с барьерами GaInAsP [6], то переход к диапазону 3-5 мкм в указанной системе InGaAs/GaInAsP невозможен. Барьеры AlGaInAs благодаря большему значению ширины запрещенной зоны и большему разрыву зон позволяют достигнуть требуемых значений.

расчетную Рис 2 демонстрирует зависимость положения максимума спектра фоточувствительности для ΓС с КЯ InGaAs/AlGaInAs коротковолнового ЛЛЯ диапазона. Результаты также представлены в виде линий уровня для определенной длины волны. Видно, что форма кривых не изменилась, а для достижения длин волн меньших 5 мкм требуется использование барьеров с предельным содержанием AlAs.

Помимо положения максимума фоточувствительности, важным вопросом при проектировании ГС с КЯ для ИК-ФП является выбор оптимального уровня легирования КЯ. Как правило, легируют КЯ до состояния вырождения, когда уровень Ферми превышает первый уровень размерного квантования электронов. Влияние

Рис.3 Расчетная оценка оптимального уровня легирования КЯ InGaAs/AlGaInAs/InP (*N_{OW}*)в зависимости от толщины КЯ (*d_{OW}*).

положения уровня Ферми на обнаружительную способность можно записать в виде [7]:

$$D^* \propto (E_F - E_1) \exp(-\frac{E_F - E_1}{2kT}),$$
 (1)

где E_F – положение уровня Ферми;

 E_{I} – положение первого электронного уровня.

Видно, что максимальная обнаружительная способность достигается при превышении уровнем Ферми первого уровня на 2kT. Положение уровня Ферми в КЯ можно оценить по простой зависимости [4, 5]:

$$E_{F} - E_{I} = \frac{N_{D} \pi \hbar^{2} d_{QW}}{m_{OW}^{*}}, \qquad (2)$$

где *N*_D – уровень легирования в КЯ;

 d_{QW} – толщина КЯ;

 m_{QW}^{*} – эффективная масса электронов в КЯ.

На рис. З приведена зависимость оптимального уровня легирования для КЯ InGaAs/AlGaInAs в соответствии с (2).

Проведены эксперименты по получению ГС с КЯ GaInAs/AlGaInAs методом МОС-гидридной эпитаксии и изучены их характеристики. Отсутствие напряжений в полученных ГС с КЯ дает возможность сформировать на их основе высококачественные ИК-фотоприемники с одновременной фоточувствительностью в двух спектральных диапазонах.

 [1] Rogalski, A., J. Appl. Phys., **93**, 4355 (2003).
 [2] Guden, M., Piprek, J., Modelling Simul. Mater. Sci. Eng. **4**, 349 (1994).
 [3] Vurgaftman, I., Meyer, J.R., Ram-Mohan, L.R., J. Appl. Phys. **89**, 5815 (2001).
 [4] Физика квантовых низкоразмерных структур. /Демиховский В.Я., Вугальтер Г.А. – М.: Логос, 2000.
 [5] Физика низкоразмерных систем. /Под ред. Шика А.Я. – СПб.: Наука, 2001.
 [6] Levine, B.F., J. Appl. Phys., **74**, 1 (1993).

[7] Razeghi, M., et al., Infrared Phys & Tech, **42**, 135 (2001).

Кинетика фотолюминесценции слоев SiO₂ с ионно-синтезированными нанокристаллами Si, легированных фосфором, бором и азотом

Д.И. Тетельбаум¹, В.А. Бурдов¹, <u>А.Н. Михайлов</u>¹, А.И. Белов¹, Д.А. Камбаров¹, Д.М. Гапонова²

¹ Нижегородский государственный университет им. Н.И. Лобачевского, пр. Гагарина 23/3, Н. Новгород, Россия ² Институт физики микроструктур РАН, ГСП-105, Н. Новгород, Россия

e-mail: mian@nifti.unn.ru

Хотя наноструктурированная система SiO₂:nc-Si была предметом многочисленных исследований, некоторые вопросы до сих пор лисскусионными. К числу таких остаются вопросов относятся механизмы люминесценции и особенно вопрос о влиянии на люминесценцию ионного легирования. Ранее полученные результаты [1] по фотолюминесценции (ФЛ) легированных примесями Р. В. N слоев SiO₂ с ионно-синтезированными нанокристаллами (НК) кремния позволили выявить ряд факторов, ответственных за усиление или ослабление ФЛ в диапазоне 700-900 нм, связанной с квантоворазмерным эффектом в НК Si. Эксперименты по кинетике ФЛ могут дать ценную информацию о роли тех или иных факторов. В настоящей работе проведено изучение спектральных и временных характеристик ФЛ системы SiO₂:nc-Si лля различных режимов ее синтеза и легирования.

Термические пленки SiO₂ (с толщиной 500 нм) подвергались имплантации ионов Si⁺ (100 или 140 кэВ) до концентрации избыточного Si порядка 10 ат.% и отжигались при температурах 1000 и 1100 °С в атмосфере азота. Внедрение ионов примесей P^+ , B^+ и N^+ с дозами в интервале 1.10^{14} - 1.10^{17} см⁻² (энергии ионов обеспечивали примерное совпадения профилей ионов) осуществлялось как сразу после имплантации Si⁺, то есть до формирования нанокристаллов (первый режим), так и после их формирования. ФЛ исследовалась при комнатной температуре с возбуждением импульсным азотным лазером (337 нм, частота повторения – 25 Гц, средняя мощность ~ 10 мВт, длительность импульса t_P ~ 10 нс). Излучение регистрировалось фотоумножителем R928 (Hamamatsu). Измерение временной зависимости ФЛ производилось на длине волны максимума излучения (750 нм) с помощью измерительного модуля SRS Boxcar Averager & Gate Integrator.

На рис. 1 приведены зависимости интенсивности (I_{PL}) и времени спада (τ_{PL}) ФЛ при 750 нм от дозы примесей Р, В и N для трех режимов легирования. На вставках представлены спектральные и временные зависимости ФЛ. τ_{PL} определялось путем аппроксимации функцией «растянутой» экспоненты, характерной для излучения квантово-размерных НК Si при наличии канала безызлучательной рекомбинации [2].

Усиление ФЛ при легировании фосфором обусловлено следующими причинами [1]. Атомы фосфора способствуют увеличению числа НК Si либо за счет влияния на скорость зародышеобразования (в первом режиме легирования). либо за счет примесностимулированной кристаллизации аморфных нанокластеров Si, имеющих место после отжига при 1000 °C. К наиболее важным механизмам относятся пассивация оборванных связей на границе раздела, поставка электронов в зону проводимости НК и чисто квантовый эффект. который заключается в увеличении вероятности излучательной рекомбинации за счет кулоновского взаимолействия носителей с заряженным остовом лонора. Ослабление ФЛ при легировании связано с дефектообразованием при встраивании примесей в решетку НК (этот эффект наиболее сильно выражен при легировании бором и азотом за счет большего размерного несоответствия атомов), а также преципитацией примесей при больших концентрациях.

Совокупность данных по кинетике ФЛ, а именно, увеличение три с ростом концентрации Р говорит в пользу пассивационного механизма. Дело в том, что т_{PL} при условии независимости событий излучательной и безызлучательной рекомбинации определяется следующим выражением: $t_{\text{PL}}^{-1} = t_{R}^{-1} + t_{NR}^{-1}$, где τ_{R} и τ_{NR} – времена излучательной и безызлучательной жизни рекомбинации. соответственно. В случае непрямозонного полупроводника т_R достаточно велико, поэтому для НК Si можно предположить, что $\tau_R >> \tau_{NR}$. Тогда, если считать, что τ_R не меняется, изменение τ_{PL} будет определяться только изменением т_{NR}, которое возрастает при замыкании оборванных связей атомами фосфора. Уменьшение ты с этих позиций связано с внесением дефектов и увеличением вероятности быстрой безызлучательной рекомбинации.

Представленные рассуждения не могут объяснить наблюдаемую корреляцию I_{PL} и τ_{PL} . В отличие от работы [2], где использовалось

Рис. 1. Дозовые зависимости интенсивности (а-в) и времени спада (г-е) ФЛ при 750 нм образцов SiO₂:nc-Si, легированных P, B, N в трех режимах. Штриховыми линиями отмечены интенсивности нелегированных образцов. На вставке приведены типичные спектральные и временные зависимости ФЛ.

непрерывное возбуждение, интенсивность нестационарной ФЛ не зависит напрямую от трг (при малых уровнях возбуждения короткими $I_{\rm PL} \propto I_{\rm P} N_{nc} st_{R}^{-1} t_{\rm P},$ где импульсами): $I_{\rm P}$ интенсивность возбуждения, N_{nc} – концентрация потенциально светоизлучающих НК, *s* – сечение HK. Видно, что поглощения пассивания оборванных связей может влиять на IPL лишь через N_{nc} (если предположить, что до пассивации часть НК вообще не участвовала в люминесценции), а основным механизмом усиления нестационарной ΦЛ предсказанное является теоретически вероятности увеличение излучательной рекомбинации при встраивании донорного центра в НК. При условии $\tau_R > \tau_{NR}$ величина τ_{PL} может меняться не сильно, а I_{PL} будет расти. Это согласуется с данными, представленными на рис. 1. В общем случае «работают» оба механизма, но изменение I_{PL} и т_{PL} с ростом дозы Р происходит не синхронно. Действительно, пассивация может влиять уже тогда, когда число атомов фосфора в среднем на НК (N) еще меньше единицы (для пассивации достаточно, чтобы атомы фосфора были на интерфейсах НК/матрица), а эффект легирования НК, то есть уменьшение τ_R , проявляется лишь при N > 1.

Вместе с тем, можно предположить, что при дозе 10^{16} см⁻² свой вклад вносит трансформация части аморфных включений в НК. В этом случае также τ_{PL} не должно существенно меняться, а I_{PL} будет возрастать. Чтобы отличить действие двух последних механизмов, нужны дополнительные исследования.

Работа выполнена в рамках программы Минобрнауки РФ РНП.2.1.1 (проекты №№ 4022 и 4737), проектов РФФИ № 05-02-16762 и FP6 STREP No.505285.

- [1] Тетельбаум, Д.И. и др., ФТТ, **46**, 21 (2004).
- [2] Garcia, C. et al., Appl. Phys. Lett, 82, 1595 (2003).

Динамика излучения двухчастотного лазера с вертикальным внешним резонатором

<u>Ю.А. Морозов¹</u>, М. Песса², Т. Лейнонен², А. Харконен², М.Ю. Морозов³

¹Институт радиотехники и электроники РАН, Зеленая 38, 410019, Саратов, Россия.

²Optoelectronics Research Centre, Tampere University of Technology, P.O. Box 692, 33101 Tampere, Finland ³Capaтовский государственный университет, Астраханская 83, 410026, Саратов, Россия

e-mail:yuri.mor@rambler.ru

Широкая область применения лазеров с вертикальным внешним резонатором (ЛВВР)[1] еще более увеличится при условии реализации одновременной генерации на двух частотах. Такие лазеры, по-видимому, нашли бы применение в устройствах двухволновой интерференции [2], и, что наиболее важно, при нелинейном оптическом преобразовании частоты в средний и дальний инфракрасные диапазоны [3]. Компактные устройства с возможностью одновременного излучения на двух частотах были продемонстрированы с использованием слабо связанных вертикальных резонаторов (ССВР) [4-5]. Поскольку величина частотного разделения компонент излучения при этом подходе определяется, в основном, величиной связи резонаторов, излучение со значительным интервалом между частотами (более 30 нм) невозможно.

Недавно одновременное излучение в двух частотных полосах было впервые реализовано в ЛВВР с оптической накачкой [6]. В структуре с одним резонатором, общим для обеих возбуждаемых мод, мы наблюдали генерацию с длинами волн $\lambda_{\rm S} = 984$ и $\lambda_{\rm L} = 1042$ нм и эффективностью преобразования мощности накачки порядка 10 процентов. При экспериментальном исследовании были обнаружены области параметров, внутри которых лазер работает или в непрерывном режиме одновременной генерации двухчастотного сигнала, или в режиме автомодуляции с квази-синфазным возбуждением компонент.

В настоящем докладе приводятся результаты подробного численного моделирования особенностей излучения нового двухчастотного ЛВВР [6]. На Рис.1 показана зонная диаграмма лазерной структуры. Активная область разделена с помощью тонких блокинг-слоев на три секции. Первая и третья секции содержат по две In_{0.17}Ga_{0.83}As КЯ (QW_S), излучающие на длине волны λ_S. Во второй секции размещены четыре КЯ (QW_L) In_{0.23}Ga_{0.77}As, имеющие максимум коэффициента усиления вблизи λ_L . Геометрическое расположение всех КЯ приблизительно совпадает с пучностями «своего» поля. В то же время, КЯ в секции II помещаются в узлах «чужого» поля с длиной волны λ_{s} . При этом обеспечивается минимизация поглощения коротковолнового излучения в более глубоких КЯ QW_L. Блокингслои, являясь прозрачными для излучения накачки и обоих излучаемых полей, непроницаемы для транспорта носителей. Вследствие этого реализуется независимая накачка различных секций. Поглощение излучения накачки происходит в

Рис.1. Зонная диаграмма лазерной структуры

барьерных слоях GaAs, разделяющих КЯ. Резонатор лазера, общий для обоих оптических полей, образован между брэгговским зеркалом (DBR) и внешним зеркалом, которое на Рис.1 не показано.

Распределение носителей в поглощающих слоях было определено в результате совместного решения уравнения диффузии и уравнений обмена носителями между ямами и континуумом над ними. Пример расчета профиля распределения плотности носителей и мощности накачки в активной области лазера представлен на Рис.2. Наличие блокинг-слоев проявляется в виде ступенчатого профиля концентрации носителей со скачками, соответствующими положению этих слоев. Как видно, по эффективности сбора носителей (то есть, отношению концентрации носителей в яме к соответствующей величине, относящейся к состоянию континуума над ямой) длинноволновые ямы QW_L значительно превосходят коротковолновые QWs. Это обусловлено как меньшим временем захвата, так и большим временем выброса носителей из более глубоких QW_L [7]. Поэтому в отсутствие блокинг-слоев достижение порога для возбуждения коротковолнового излучения невозможно.

Система скоростных уравнений для описания статических и динамических процессов в лазере с высоким значением уровня задержанной обратной связи имеет следующий вид (при выводе было сделано предположение, что коэффициент усиления, достигаемый в пределах каждой секции может быть отнесен к одной эквивалентной яме на каждую секцию):

Рис.2. Плотность носителей в барьерах (n), КЯ (n_{QW}) и затухание накачки P_p в активной области структуры

$$\begin{split} \dot{S}_{1} &= v_{g} \left[\sum_{1}^{3} \Gamma_{1j} g_{1j} - \alpha_{s1} + \frac{1}{2L_{in}} \ln \left(\frac{S_{1r}}{S_{1}} \right) \right] S_{1} \\ \dot{S}_{2} &= v_{g} \left[\sum_{1}^{3} \Gamma_{2j} g_{2j} - \alpha_{s2} + \frac{1}{2L_{in}} \ln \left(\frac{S_{2r}}{S_{2}} \right) \right] S_{2} \\ \dot{N}_{1} &= I_{1} - \frac{N_{1}}{\tau_{r}} - v_{g} \left(g_{11}S_{1} + \frac{\Gamma_{21}}{\Gamma_{11}} g_{21}S_{2} \right) \\ \dot{N}_{2} &= I_{2} - \frac{N_{2}}{\tau_{r}} - v_{g} \left(g_{22}S_{2} + \frac{\Gamma_{12}}{\Gamma_{22}} g_{12}S_{1} \right) \\ \dot{N}_{3} &= I_{3} - \frac{N_{3}}{\tau_{r}} - v_{g} \left(g_{13}S_{1} + \frac{\Gamma_{23}}{\Gamma_{13}} g_{23}S_{2} \right) \end{split}$$

где $S_{1,2}$ – плотность фотонов с длиной волны $\lambda_{S,L}$, соответственно; значения с индексом τ относятся к моменту времени *t*- τ_{exb} Γ_{ij} , g_{ij} – коэффициент ограничения и усиления *i*-го оптического поля в *j*-й КЯ, v_g – групповая скорость, L_{in} – длина структуры, $N_{1,2,3}$ – плотность носителей в эквивалентных КЯ, τ_r и τ_{ext} – время жизни в КЯ и время обхода внешнего резонатора, соответственно,

 $I_{j} = (J_{-}^{(j)} - J_{+}^{(j)})/t_{QW}$ - плотность диффузионного потока носителей в *j*-ю яму вследствие их притока слева и справа, t_{QW} – ширина ямы. Суммарный коэффициент потерь можно записать как

$$\alpha_{s1,s2} = \alpha_{in} - \frac{1}{L_{in}} \ln \left[r_{ext} (1 - r_f^2) r_{DBR} \begin{pmatrix} \lambda_s \\ \lambda_L \end{pmatrix} \right]$$

где α_{in} – потери в материале структуры, r_{ext} , r_f и r_{DBR} – коэффициент отражения внешнего зеркала, поверхности структуры и брэгговского зеркала, соответственно.

Проводя анализ устойчивости стационарного состояния системы скоростных уравнений, можно определить области изменения параметров, в которых достигается либо состояние непрерывной генерации, либо режим с импульсной автомодуляцией выходного излучения. В частности, можно показать, что при значении параметра Γ_{12} , являющегося мерой несоответствия положений QW_L узлам стоячей волны для коротковолнового поля, достигающем 0.001, стационарное состояние двухчастотной генерации теряет устойчивость. Заметим, что при точном совпадении уз-

лов λ_8 и положений QW_L значение $\Gamma_{12} = 0.00015$ и реализуется лишь режим стационарной двухчастотной генерации. На Рис.3 показано развитие неустойчивости при следующих значениях матрицы коэффициентов ограничения

г_	0.01	0.002	0.01
1 =	0.003	0.02	0.003

Мощность накачки на входе в активную область P_{in} , коэффициенты поглощения $\alpha_{s1,s2}$ и время об-

Рис.3. Динамика излучения двухчастотного ЛВВР при значении параметров, соответствующих потере устойчивости стационарного состояния.

хода внешнего резонатора τ_{ext} были выбраны равными 1 Вт, 20 см⁻¹ и 3 нс, соответственно.

Время развития неустойчивости стационарного состояния составляет величину порядка десятков микросекунд. Первоначально малые отклонения от стационарного состояния нарастают, колебания переходят в режим квазихаотических пульсаций. Для более наглядного представления о характере излучения на вставке к рисунку показана заключительная часть рассматриваемой импульсной последовательности. Как показывает дополнительный анализ, коротко- и длинноволновые импульсы сформированы в результате развития релаксационных колебаний, происходящих приблизительно синфазно. По нашему мнению, основной причиной неустойчивости, развивающейся по механизму пассивного переключения добротности, является насыщающееся поглощение коротковолнового излучения в более глубоких QW_L.

- Tropper A., et al. Journ. of Phys. D: Appl. Phys., 37, R75 (2004).
- [2] Wang C.L., et al. Opt. Lett., 20, 1071(1995).
- [3] Levi O., et al. Opt. Lett., 27, 2091(2002).
- [4] Pellandini P., et al. Appl. Phys. Lett., 71, 864 (1997).
- [5] Brunner M., et al. IEEE Phot.Techn. Lett., 12, 1316 (2000).
- [6] Leinonen T., et al. IEEE Phot.Techn. Lett., 17, 2508 (2005).
- [7] Tsai C.-Y., et al. IEEE Journ. of Sel.Top. in QE, 1, 316 (1995).

Терагерцовый фотоприемник на плазменном резонансе в полевом гетеротранзисторе с решеточным затвором

В.В. Попов¹, <u>О.В. Полищук¹</u>, Т.Ю. Багаева¹, Д.В. Фатеев¹, G.R. Aizin²

¹ Саратовский филиал Института радиотехники и электроники РАН

ул. Зеленая 38, 410019 Саратов, Россия

² Department of Physical Sciences, Kingsborough College of the City University of New York, 2001 Oriental

Blvd., Brooklyn, NY 11235

e-mail: polischuk@soire.renet.ru

В последнее время проводятся интенсивные экспериментальные исследования явления резонансного детектирования терагерцового (ТГц) излучения при возбуждении плазменных колебаний в канале полевого транзистора с двумерным электронным газом (ПТ-2D). Привлекательность такого типа детектора определяется возможностью плавной электрической перестройки частоты детектирования за счет изменения величины затворного напряжения и сравнительной технологической легкостью выполнения всех элементов устройства на одном чипе. Детектирование может быть связано как с фотогальваническим откликом [1,2], так и с явлением фотопроводимости [2], возникающих при возбуждении плазменного резонанса в канале ПТ-2D под действием ТГц излучения. Теория плазмонного ТГц фотогальванического отклика ПТ-2D изложена в [3]. В то же время, наблюдаемое в экспериментах [2] явление ТГц фотопроводимости при плазменном резонансе в канале ПТ-2D до настоящего времени не было объяснено.

В данной работе построена теория явления фотопроводимости в цепи сток-исток ПТ-2D с решеточным затвором (с периодом порядка одного микрона) большой площади (сравнимой с типичной площадью поперечного сечения сфокусированного ТГц пучка). Теоретический подход основан на совместном решении гидродинамических уравнений, описывающих нелинейную динамику 2D электронов, и уравнений электродинамики, описывающих взаимодействие плазменных колебаний в канале транзистора с падающим ТГц излучением.

Пространственно-временное усреднение нелинейных гидродинамических уравнений движения 2D электронов позволяет вычислить постоянную составляющую плотности двумерного тока в канале транзистора $j_0 = j_{0,0} + \Delta j_0$. Вели $j_{0,0} = \sigma_0 E_0$ отвечает равновесному току, чина возникающему в 2D электронном канале с проводимостью $\sigma_0 = e^2 N_s \tau / m^*$ под действием заданного постоянного тянущего электрического поля E₀ в отсутствие ТГц излучения, где N_s – равновесная концентрация 2D электронов, т характерное время электронной релаксации, e > 0 и m^* – соответственно заряд и эффективная масса электрона. Добавка к току, вызванная действием ТГц излучения, дается выражением

$$\Delta j_0 = \frac{e^2 \tau}{m^*} \sum_{\pm \omega_0} \sum_q n_q E_{-q}, \qquad (1)$$

где n_a и E_a – амплитуды пространственных фурье-гармоник соответственно электронной плотности и полного электрического поля в плоскости 2D электронного канала, осциллирующих на частоте ω_0 падающего ТГц излучения. Волновые векторы фурье-гармоник $q = 2\pi m/l$ $(m = 0, \pm 1, \pm 2, ...)$ определяются периодом решетки затворного электрода І. В режиме постоянного тока смещения $(j_0 = j_{0,0})$ ТГц облучение транзистора приводит к дополнительному падению напряжения на длине *L* электронного канала $\Delta U_0 = -\Delta j_0 L / \sigma_0$. Именно эта величина измеряется в качестве ТГц фотоотклика в эксперименте [2] в режиме постоянного тока в канале ПТ-2D.

Экспериментальные данные [2] свидетельствуют о том, что фотоотклик возрастает линейно с мощностью падающей волны в очень широком диапазоне изменения мощности ТГц излучения. Для описания такой зависимости фотоотклика формулой (1) достаточно вычислить величину n_q в линейном приближении по амплитуде электрического поля E_q . В этом случае получается следующая связь фурье-гармоник осциллирующих плотности заряда и электрического поля в 2D электронном канале:

где

$$\sigma(\omega_{0},q) = \sigma_{0} \frac{\dot{n}\omega_{0}}{(\omega_{0} - q\upsilon_{0,0})(\omega_{0} - q\upsilon_{0,0} + \dot{n})}$$
(2)

 $n_q = -\frac{q}{e\omega_0}\sigma(\omega_0, q)E_q,$

– проводимость 2D электронного потока, движущегося с дрейфовой скоростью $\upsilon_{0,0} = -j_{0,0}/eN_s$, на частоте ω_0 падающего ТГц излучения, $\nu = 1/\tau$. Окончательно получаем следующее выражение для величины фотоотклика:

$$\Delta U_{0} = 2L \frac{ev}{m^{*}} \sum_{q} \frac{q \left| E_{q} \right|^{2}}{\left(\omega_{0} - q \upsilon_{0,0} \right) \left[\left(\omega_{0} - q \upsilon_{0,0} \right)^{2} + v^{2} \right]} (3)$$

Физический механизм детектирования основан на явлении нелинейной электрострикции (зависимость локальной высокочастотной проводимости канала транзистора от электронной плотности), возникающем за счет неоднородности плазменных колебаний ($q \neq 0$). Фотоотклик возникает только при протекании постоянного тока смещения в канале транзистора ($\upsilon_{0,0} \neq 0$) как изменение сопротивления канала под действием ТГц излучения (явление ТГц фотопроводимости). Заметим, что коэффициент перед знаком суммы в выражении для фотоотклика (3) возрастает линейно при уменьшении времени электронной релаксации $\tau = 1/\nu$, что может объяснить рост фотоотклика с увеличением температуры ТГц фотодетектора, наблюдаемый в [2].

Амплитуды фурье-гармоник полного осциллирующего электрического поля в плоскости 2D электронного канала, входящие под знаком суммы в правую часть выражения для фотоотклика (3), вычислялись в линейном приближении по полю ТГц волны, падающей нормально на плоскость решетки затворного электрода, в рамках строгого электродинамического подхода, развитого в [4], при этом ТГц отклик 2D электронов описывался проводимостью (2).

Рис. 1. Спектр относительного фотоотклика (сплошная линия) и спектр поглощения ТГц излучения (штриховая линия) в канале ПТ-2D на основе структуры AlGaAs/GaAs при мощности падающего ТГц излучения 1 Вт/см². Величины периода и ширины зазора решетки затворного электрода равны соответственно 4 мкм и 0.4 мкм, $\tau = 1.\times 10^{-11}$ с. Амплитуда фотоотклика (3) нормирована на величину падения напряжения на длине канала транзистора в отсутствие ТГц излучения.

Резонансный характер фотоотклика (рис. 1) обусловлен резонансным ростом амплитуд фурье-гармоник электрического поля $|E_q|$ с волновыми векторами $q = \pm 2\pi m/l$, где *m* соответствует порядку плазменного резонанса. Заметим, что на 2-ом плазменном резонансе реализуется большая по сравнению с основным резонансом (*m*=1) пиковая величина фотоотклика в связи с большей неоднородностью высшей плазменной моды (большие значения *q* для резонансной фу

рье-гармоники электрического поля). Чувствительность плазменного фототранзистора пропорциональна току смещения и возрастает с уменьшением ширины щелей решеточного затвора. На рис. 1 видно, что в отличие от резонанса ТГц поглощения резонанс фотоотклика характеризуется асимметричной формой резонансной кривой с изменением знака фотоотклика, что соответствует экспериментальным наблюдениям [2].

Рис. 2. Зависимость относительного фотоотклика на различных частотах: 450 ГГц (сплошная линия) и 400 ГГц (штриховая линия).

Частота резонанса фотоотклика может перестраиваться путем изменения затворного напряжения (рис. 2). Фототранзистор легко согласуется с падающим ТГц излучением, поскольку решеточный затвор с широкой апертурой представляет собой эффективный элемент связи между ТГц излучением и плазменными колебаниями в канале транзистора. При этом подбором ширины щелей решетки затворного электрода и расстояния от затвора до 2D электронного канала можно обеспечить равенство ТГц импеданса транзистора и волнового сопротивления окружающей среды практически при любом омическом сопротивлении канала транзистора на постоянном токе.

Работа выполнена при поддержке РФФИ, программы фундаментальных исследований ОФН РАН «Новые материалы и структуры», the U.S. Army Research Office (Grant #W911NF-05-1-0031).

[1] F. Teppe, W. Knap, D. Veksler et al., Appl. Phys. Lett., 87, 052107 (2005).

[2] E.A. Shaner, M. Lee, M.C. Wanke et al., Appl. Phys. Lett., 87, 193507 (2005).

[3] M.S. Shur, J.-Q. Lu, IEEE Trans. Microwave Theory and Technique, 48, 750 (2002).

[4] V.V. Popov, O.V. Polischuk, T.V. Teperik et al., J. Appl. Phys. 94, 3556 (2003).

Резонансная дифракция и преобразование поляризации света на поверхности нанопористого металла

Т.В.Теперик¹, <u>В.В.Попов</u>¹, О.В.Полищук¹, Д.В.Фатеев¹,

F.J. García de Abajo², J.J.Baumberg³, T.Kelf³, Y.Sugawara³

¹ Саратовский филиал Института радиотехники и электроники РАН ул. Зеленая 38, 410019 Саратов, Россия

² Donostia International Physics Center, Aptdo. 1072 20080 San Sebastian, Spain ³ University of Southampton, Southampton, SO17 1BJ, United Kingdom e-mail: <u>popov@soire.renet.ru</u>

В последнее время интенсивно развивается оптика нанопористых металлов, интерес к которым обусловлен недавними открытиями уникальных оптических свойств этих материалов и появлением сравнительно простых и дешевых изготовления технологий металлических структур с периодической организацией нанопор. например, с помощью электрохимического осаждения металла на подложку через маски из самоорганизующихся коллоидных полимерных частиц [1].

Известно, что спектры отражения света от нанопористых металлов характеризуются интенсивными резонансами, связанными с возбуждением различных типов плазменных колебаний В таких структурах [2,3]: поверхностных плазменных поляритонов, возбуждаемых на плоской границе пористого плазменных колебаний, металла. И локализованных вблизи нанопор (плазменные Планарная решетка ми-колебания). пор. расположенная вблизи плоской поверхности металла (на глубине меньше толщины скин-слоя в образующем металле), выполняет при этом двойную функцию: a) поддерживает локализованные вблизи пор плазменные миколебания и б) является элементом связи между палаюшим поверхностными светом и плазменными поляритонами, возбуждаемыми на плоской границе нанопористого металла. При (антикроссинге) резонансной связи двух вышеуказанных типов плазменных мод возникает гигантское усиление локального светового поля на поверхности нанопористого металла.

Наряду с выполнением вышеуказанных функций, система периодически упорядоченных нанопор является оптической дифракционной решеткой. что приводит к появлению особенностей, связанных с открытием высших порядков дифракции, в спектрах отражения света (аномалии Релея) от поверхности нанопористого металла. данной работе исследуется B резонансное взаимодействие фотонов, дифрагирующих на поверхности нанопористого металла (рис.1а), с плазменными миколебаниями. возбуждаемыми в плотноупакованной решетке нанопор внутри

металла. Пленка нанопористого золота (рис.1а) была синтезирована путем электрохимического золота на сплошную осаждения золотую подложку через маску из самоорганизующихся коллоидных полимерных частин [1]. Поверхностная золотая пленка содержит плотноупакованную гексагональную решетку пор диаметром 500 нм. Для вычисления спектров отражения от такой нанопористой металлической поверхности был использован комбинированный теоретический метод, объединяющий формализм матрицы рассеяния и разложение полного поля в периодической решетке сферических полостей по мультиполям (метод Корринги-Кона-Ростокера) [4].

Рис. 1: SEM-изображение поверхности нанопористого золота (а) и волновые векторы «скользящих фотонов» (b). Плоскость падения света совпадает с направлением Г–М.

рис.2а 2b Ha И представлены соответственно результаты измерений и расчета интенсивности дифрагированного луча с поверхностной проекцией волнового вектора q₋₁₋₁ (см рис.1b) для случая, когда плоскость падения р-поляризованного света совпадает с направлением Г-М. Из рис.2а и 2b видно, что дифрагированный луч возникает только в угла значений области падения правее дисперсионной кривой «скользящих фотонов» с волновым вектором При этом, q_{-1-1} . интенсивность дифрагированного луча значительно возрастает в условиях резонансной связи дифрагирующего света с плазменными миколебаниями нанопорах. Уширение в дифракционных резонансов в эксперименте по сравнению с теоретическим значением вызвано рассеянием света на неоднородностях покрывающей металлической поверхности, а также с рассеянием электронов на границах тонких стенок между полостями в плотной упаковке нанопор, что не учитывалось в теоретической модели. резонансов в нанопорах и может перестраиваться при изменении диэлектрических свойств материала заполнения нанопор. Обнаруженные эффекты могут найти применение для оптической поляризационной спектроскопии пористых металлов и для разработки различных

Рис. 2: Результаты измерений (а) и расчета (b) интенсивности дифрагированного луча для случая, когда плоскость падения *p*-поляризованного света совпадает с направлением Γ –М. Результаты расчета *p*-поляризованной (c) и *s*-поляризованной (d) компонент дифрагированного луча для случая, когда плоскость падения *p*-поляризованного света совпадает с направлением Γ –К. Вспомогательные линии отмечают дисперсию «скользящих фотонов» с волновым вектором q_{-1-1} , полученную в модели «пустой решетки» [3], и частоты дипольной (*l*=1) и квадрупольной (*l*=2) плазменных ми-мод, вычисленные в модели одиночной полости в бесконечном металле [5].

Для случая, представленного на рис.2а и 2b, дифрагированный луч сохраняет поляризацию падающего излучения. Однако, при изменении направления падающего светового луча дифрагированный световой луч приобретает эллиптическую поляризацию. На рис.2с и 2d представлены результаты расчета интенсивности *p*- и *s*-компонент эллиптически поляризованного дифрагированного луча с волновым вектором q_{-1-1} для случая, когда плоскость падения *p*поляризованного света совпадает с направлением $\Gamma - K$. При скользящих углах падения дифрагированный луч имеет *s*-поляризацию.

Таким образом, при резонансной дифракции света на поверхности нанопористого эффективное металла происходит преобразование поляризации света. При определенных условиях палаюший И преобразованный свет имеют ортогональную поляризацию. Частота преобразованного света определяется частотами плазменных минанофотонных устройств на основе нанопористых металлических структур.

Данное исследование выполнено в рамках работ по гранту РФФИ 05-02-17513, гранту Президента РФ для поддержки молодых российских ученых МК-1802.2005.2 и Программе фундаментальных исследований Президиума РАН.

- [1] M.E.Abdelsalem, P.N.Bartlett, J.J.Baumberg, and S.Coyle, Adv. Mater. 16, 90 (2004).
- [2] Kelf T. A., Sugawara Y., and Baumberg J. J., Phys. Rev. Lett. 95, 116802 (2005).
- [3] T.V.Teperik, V.V.Popov, F.J.García de Abajo, and J.J.Baumberg, phys. stat. sol. (c) 2, 3912 (2005).
- [4] T.V. Teperik, V.V. Popov, and F.J. García de Abajo, Phys. Rev. B 71, 085408 (2005).
- [5] S. Coyle, M.C. Netti, J.J. Baumberg et al., Phys. Rev. Lett. 87, 176801 (2001).

О возможности расширения области пространственного заряда в диодной структуре Si:Er/Si, излучающей в режиме пробоя p/n-перехода.

Д.Ю. Ремизов, З.Ф. Красильник, В.П. Кузнецов, С.В. Оболенский,

В.Б. Шмагин

Институт физики микроструктур РАН, Нижний Новгород

Введение

Интерес к монокристаллическому кремнию, редкоземельным легированному элементом эрбием, обусловлен перспективой создания эффективных светоизлучающих структур на его основе, излучающих в одном из окон волоконно-оптических прозрачности линий связи ($\lambda \sim 1.5$ мкм). При комнатной температуре наиболее эффективен ударный механизм возбуждения ионов Er³⁺, реализуемый в диодных структурах Si:Er/Si, работающих при обратном смещении в режиме пробоя p/n-перехода [1,2]. Высокая эффективность ударного механизма возбуждения ионов Er³⁺ обусловлена высоким эффективным сечением ударного возбуждения ионов эрбия и практически полным подавлением в области пространственного заряда (ОПЗ) диодной структуры одного из основных механизмов безызлучательной релаксации возбужденных ионов Er³⁺ – Оже-релаксации на свободных носителях.

Элементарные оценки показывают, что интенсивность эрбиевой ЭЛ ИЗ обратно диодной смешенной структуры прямо пропорциональна поверхностной плотности ионов эрбия на единицу площади р/n-перехода, или, что то же самое, ширине ОПЗ. Ранее, на примере диодных структур p⁺/n-Si:Er и p⁺/n-Si:Er/n⁺ нами было показано, что увеличение ширины ОПЗ, вызываемое уменьшением концентрации ионизованных доноров N_D в базе диода p⁺/n-Si:Er [3] или увеличением ширины слоя n-Si:Er в структуре p^+/n -Si:Er/n⁺ [4] сопровождается заметным увеличением (на порядок величины) как интенсивности, так и эффективности возбуждения ЭЛ ионов эрбия. В то же время, увеличение ширины ОПЗ более 150-200 нм сопровождается развитием лавинного пробоя p/n-перехода и резким уменьшением интенсивности ЭЛ.

В работе [4] нами была предложена диодная структура Si:Er/Si туннельно-пролетного типа, в которой, с нашей точки зрения, удастся преодолеть основное ограничение диодных структур, работающих в режиме пробоя р/пперехода, связанное с развитием лавинного пробоя при ширине ОПЗ, превышающей 150-200 нм. В настоящем сообщении приведены первые экспериментальные результаты исследования ЭЛ свойств диодных структур такого типа.

Методика эксперимента

данной работе исследовались В светоизлучающие диодные структуры типа n-Si:Er/n⁺-Si/p⁺-Si. Структуры были выращены метолом сублимационной молекулярной эпитаксии (СМЛЭ) на подложках p-Si:В (КДБ-12) с ориентацией (100) и удельным сопротивлением 12 Ом·см. Толщина слоя p⁺-Si ~ 0.1 мкм, концентрация дырок в слое ~ 5×10¹⁸ см⁻³, концентрация свободных носителей в слое n^+ -Si составляет ~ 2×10¹⁸ см⁻³, толщина слоя варьируется от 10 до 100 нм, толщина слоя п-Si:Er составляла ~ 500 нм, концентрация носителей в нем ~ 1×10¹⁶ см⁻³. Светодиоды изготавливались по стандартной мезатехнологии, площадь мезы $\sim 2.5~{\rm Mm}^2,~70\%$ ее площади свободно для выхода излучения. Вся серия исследованных диодных структур была получена в одном ростовом опыте с варьированием толщины слоя n⁺-Si по длине пластины.

Спектры ЭЛ регистрировались С использованием дифракционного монохроматора МДР-23 и инфракрасного фотоприемника InGaAs, охлаждаемого до температуры жидкого азота, в диапазоне 1.0 – 1.6 мкм с разрешением 6 нм. Для возбуждения и регистрации спектров ЭЛ использовалась импульсная модуляция тока накачки (длительность импульса тока накачки 4 мс, частота повторения ~ 40 Гц, амплитуда 200 мА) и методика синхронного накопления сигнала. Вольт-амперные характеристики (ВАХ) диодов измерялись в импульсном режиме. Напряжения пробоя определялись U break экстраполяцией прямолинейного участка обратной ветви ВАХ до пересечения с осью напряжений.

Результаты эксперимента и их обсуждение

туннельно-пролетной Илея структуры $p^+/n^+/n$ -Si:Er состоит в пространственном разнесении областей туннельной генерации и разогрева электронов (область сильного поля) и ударного возбуждения ионов Er³⁺ (область слабого поля). Максимальное поле в области туннельной генерации и разогрева электронов должно быть достаточно сильным, чтобы инициировать туннельный пробой p^{+}/n^{+} перехода. Это достигается легированием n⁺- $(1-2) \times 10^{18}$ cm⁻³. области до концентрации Ширина n⁺-области при таком уровне
легирования должна быть достаточно малой (~ 10-15 нм), что представляет определенные трудности технологического плана, связанные с формированием резких межслоевых границ. И наоборот, поле в области ударного возбуждения ионов Er³⁺ должно быть относительно слабым (~ 3×10⁵ В/см при уровне легирования слоя n⁻-Si:Er $N_D \sim 10^{16} \text{ см}^{-3}$), чтобы не допустить формирования лавины. Его роль - компенсировать потери, связанные с рассеянием носителей на тепловых колебаниях решетки. Такая конфигурация поля позволяет заметно расширить ОПЗ структуры (до 0.5-1.0 мкм), не переходя в режим лавинного пробоя p/n-перехода, для которого характерно заметное уменьшение интенсивности эрбиевой ЭЛ.

представлены Ha рис.1 результаты измерения напряжений пробоя и интенсивности ЭЛ ионов эрбия в зависимости от толщины слоя n⁺-Si. В целом, изменение свойств структуры, наблюдаемое при изменении толщины слоя n⁺-Si, совпадает с нашими представлениями об особенностях ударного возбуждения ионов эрбия. На рис.1а показано, как изменяется механизм пробоя структуры p⁺/n⁺/n-Si:Er при изменении толщины слоя n⁺-Si. Из сравнения напряжений пробоя при температурах T = 300 K и Т = 77 К видно, что уменьшение толщины слоя n⁺-Si приводит к трансформации туннельного механизма пробоя (U $_{break}^{300}$ < U $_{break}^{77}$) при d_{n+} \geq 30 нм в смешанный ($U_{break}^{300} \approx U_{break}^{77}$) при $d_{n+} \le 15$ объясняем постепенным Мы ЭТО HM электрического поля проникновением в слаболегированный слой n-Si:Er при уменьшении толщины слоя n^+ -Si. При $d_{n^+} \ge 60$ нм ОПЗ не выходит за пределы слоя n⁺-Si, и в соответствии с физикой электрического пробоя однородно легированных толстых, p/nпереходов, в структуре реализуется туннельный механизм пробоя. С уменьшением толщины слоя n⁺-Si глубина проникновения электрического поля в слой n-Si:Er увеличивается, И. соответственно, нарастает интенсивность процессов лавинного размножения носителей в слое n-Si:Er, что и вызывает трансформацию туннельного механизма пробоя в смешанный при $d_{n^+} \le 15$ -20 нм.

Уменьшение толщины слоя n^+ -Si и соответствующее увеличение глубины проникновения ОПЗ структуры в слой n-Si:Ег приводит к росту интенсивности ЭЛ ионов Er^{3+} (рис.1б), что также соответствует нашим представлениям об особенностях электрического пробоя и ударном возбуждении ионов эрбия в туннельно-пролетной структуре.

В то же время, не находят пока объяснения следующие особенности поведения исследованной нами туннельно-пролетной структуры:

1) уменьшение толщины слоя n^+ -Si не ведет к трансформации смешанного механизма пробоя

р/n-перехода в лавинный, что следовало бы ожидать при достаточно глубоком проникновении ОПЗ в область n-SiEr;

2) интенсивность ЭЛ из туннельно-пролетной структуры не превышает интенсивность ЭЛ из традиционной p^+/n -SiEr структуры, что также свидетельствует о недостаточном проникновении ОПЗ в область n-SiEr.

Рис.1 Зависимость напряжениий пробоя и интенсивности ЭЛ ионов ${\rm Er}^{3^+}$ от толщины слоя $n^+.$

Возможное объяснение отмеченным эффектам может быть связано, с нашей точки зрения, с погрешностями нашей оценки концентрации ионизованных доноров в слое n-SiEr или нерезкостью межслоевой границы n⁺/n-Si:Er.

Работа выполнена при финансовой поддержке РФФИ (гранты 04-02-17120, 04-02-08240-офи-а, 06-02-16563) и INTAS (грант 03-51-6486).

[1] G.Franzo, S.Coffa, F.Priolo, C.Spinella. J.Appl.Phys. 1997. V.81. P.2784.

[2] N.A. Sobolev, A.M. Emel'yanov, K.F. Shtel'makh. Appl. Phys. Lett. 71, 14 ,1930 (1997).
[3] V.B. Shmagin, V.P. Kuznetsov, D.Yu. Remizov, Z.F. Krasil'nik, L.V. Krasil'nikova, D.I.Kryzhkov. Materials Science & Engineering B. V. 105/1-3, pp. 70-73 (2004).

[4] В.Б. Шмагин, Д.Ю. Ремизов, С.В. Оболенский, Д.И. Крыжков, М.Н. Дроздов, З.Ф. Красильник. Физика Твердого Тела, 47, 120 (2005).

Эффект Штарка в многослойной системе сильно связанных квантовых точек InAs/GaAs

М.М. Соболев, А.Е. Жуков, А.П. Васильев, Е.С. Семенова, В.С. Михрин

Физико-технический институт им. А.Ф.Иоффе РАН, Санкт-Петербург, 194021, Россия e-mail: m.sobolev@mail.ioffe.ru

Вертикальное сопряжение (ВС) двух и более полупроводниковых квантовых точек (КТ), разделенных барьерами GaAs толщиной несколько нанометров, посредством кулоновского взаимодействия И квантово механического туннелирования может привести к образованию искусственных молекул И состояний гибридизации носителей с расщеплением уровней связанные на И антисвязанные состояния. Основному состоянию, так же как и другим состояниям такой системы ВСКТ должно быть присуще красное смещение по энергии при наличии электрического поля. Подобного рода зависимости получили наименование квантово-ограниченного эффекта Штарка. В теоретических работах ряда авторов было установлено, что все возбужденные будут пересекающимися состояния ипи антипересекающимися с другими состояниями, и это должно привести к переупорядочению состояний в сильном электрическом поле. Сопряжение ΚТ можно контролировать посредством изменения величины внешнего электрического поля и усиления эффекта гибридизации электронных состояний двух и более КТ в зависимости от толщины прослойки между ними (d_{GaAs}). Самостоятельный интерес, ввиду возможного применения структур с ВСКТ для электрооптической модуляции света, имеют также исследования эффекта Штарка ВСКТ структур с различным числом рядов КТ.

Исследуемые в наших предыдущих работах InAs/GaAs-гетероструктуры с ВСКТ были получены методами молекулярно-пучковой эпитаксии на подложках n^+ -GaAs с ориентацией (100). Массив КТ был сформирован в результате двух, трех, шести и восьми кратного осаждения 2 монослоев InAs, разделенных прослойкой GaAs толщиной d_{GaAs}=15, 40 и 100 Å. ВСКТ были помещены в середину p^0 или n^0 – GaAs толщиной 0.90 мкм, которые были легированы до концентрации 2×10^{16} см⁻³. Были изготовлены структуры как с легированными прослойками GaAs, так и нелегированными. Сверху p^0/n^0 – GaAs слой был покрыт n^+/p^+ – GaAs.

Исследования квантовых состояний И эффекта Штарка InAs/GaAs гетероструктурах с ВСКТ производились с с использованием метода нестационарная спектроскопия глубоких уровней (DLTS). При этом метод DLTS, в отличие от межзонной спектроскопии, исследует не совместное поведение электронов и дырок в полупроводниковых p-n-структурах, а Применение DLTS-метода раздельное. для исследования эмиссии носителей квантовыми состояниями ВСКТ в p-n-гетероструктурах InAs/GaAs в зависимости от толщины прослойки d_{GaAs} между двумя слоями квантовых точек InAs, от числа слоев квантовых точек и от величины напряжения обратного смещения U_r позволило нам установить, что для гетероструктур InAs/GaAs с BCKT:

- Сопряжение близко расположенных КТ, и происходящая при этом гибридизация их квантовых состояний электронов/дырок, так же как и локализация дырок в одной из КТ приводит к сильному смещению Штарка для этих vровней энергии состояний при приложении к гетероструктуре напряжения обратного смещения. Величина смещения Штарка для ВСКТ достигает 100 мэВ при приложении к структуре 2 В, что много больше спектральной флуктуации и смещения Штарка одиночных КТ (1 мэВ).
- Независимо от толщины прослойки d_{GaAs} между двумя рядами КТ InAs реализуется эффект локализации дырок в одной из точек КТ-молекулы.
- При толщине прослойки d_{GaAs}=100 Å между двумя рядами КТ система проявляют себя как пара несвязанных КТ. Основные и возбужденные состояния этой системы проявляют слабое смещение Штарка уровней энергии (1÷2 мВ).
- При толщине прослойки d_{GaAs}=40 Å между двумя рядами КТ система находится в фазе молекулы. Гибридизация электронных состояний двух близко расположенных КТ приводит к расщеплению уровней на связанные и антисвязанные, основные и возбужденные состояния электронов: 1s⁺, 1s⁻, 2p⁺, 2p⁻, 3d⁺.

В этой работе мы исследовали влияние увеличения числа рядов КТ в InAs/GaAs гетероструктуре с BCКТ до восьми на DLTS – спектр, связанный с эмиссией электронов. Прослойки GaAs между слоями КТ- InAs были толщиной 40 Å и специально нелегировались.

Мы провели измерения C-V-характеристик p-n-гетероструктур InAs/GaAs с BCKT при температуре T= 82 К. В профилях распределения концентрации свободных электронов n^{*}(U_r) всех структур наблюдались пики, проявление которых связано с опустошением носителей аккумулированных на квантовых состояниях точек. Для определения пространственной локализации DLTS-сигналов и природы уровней, связанных с этими сигналами, были проведены измерения спектров при постоянной величине напряжения импульса заполнения U_f И

варьировании величиной импульса напряжения, при котором регистрировался DLTS сигнал U_b.

DLTS-исследования позволили определить, что для структур с тремя и восьмью рядами КТ наблюдается четыре DLTS-пика: E1, E2, E3 и E5, а для структуры с восьмью рядами КТ пять DLTS-пиков: E1, E2, E3 и E5 и еще один, который мы обозначили как E1b. Лля определения природы этих уровней были проведены исследования зависимости спектров DLTS от условий предварительного изохронного отжига (U_{ba}< 0 или U_{ba} = 0) и при оптической подсветке, при тех значениях U_b, при которых характерные наблюдались изменения в поведении спектров DLTS [1]. DLTS-спектры практически не зависели от условий изохронного отжига. но изменялись при оптической подсветке: наблюдался рост величин DLTSсигналов всех пиков структур, что позволило отождествить пики с квантовыми состояниями BCKT.

Для пиков DLTS, атрибутируемых С квантовыми состояниями точек была обнаружена также зависимость от величины U_b. Были построены зависимости температурного положения их максимумов от величины U_b (рис. Наблюдаемые зависимости 1a.b.c.d). были связаны с проявлением квантово-ограниченного эффекта Штарка, приводящего к смещению уровней квантовых состояний.

Зависимости смещения Штарка пиков Е1-Е5 от величины U_b структуры с двумя рядами КТ были подобны тем, что приведены В теоретической работе [1]. В этой работе было показано, что для массива состоящего из двух рядов ВСКТ при сопряжении КТ, может произойти расщепление уровней на связанные и антисвязанные состояния, основные И состояния, а возбужденные сама система оказаться в фазе молекулы. Результаты наших исследований позволили атрибутировать DLTSпики структуры, содержащей два ряда КТ, с состояниями квантовой молекулы: E5 - 1s⁺, E4 - $2p^+$, E3- 1s⁻, E2 - $2p^-$, E1 - $3d^+$. И подтвердить тот факт, сопряжение электронных состояний двух точек КТ-молекулы приводит к образованию связанных и антисвязанных, основных И возбужденных состояний 1s⁺, 1s⁻, 2p⁺, 2p⁻, 3d⁺, образующихся из состояний КТ. Для структур с большим, чем два числом рядов КТ Увеличение числа рядов КТ до восьми в InAs/GaAs гетероструктуре с ВСКТ не приводит к существенному изменению самого DLTS спектра, связанного с эмиссией электронов. Однако при этом наблюдается уменьшение величины смещения Штарка для уровней энергии электронов ЕЗ и Е4, что по-видимому определяется уменьшением деформационного потенциала в окрестностях КТ при увеличении числа их рядов.

[1] Sheng, W., Leburton, J-P., Appl. Phys. Lett., 9, 1258 (2001)

Рис.3 Зависимости температурного положения максимумов пиков DLTS от величины импульса напряжения U_b для структур с: а -2 рядами, b - 3 рядами, с -6 рядами, d - 8 рядами KT.

Краевая электролюминесценция эффективного точечного кремниевого светодиода

А.М. Емельянов¹, В.В. Забродский, Н.В. Забродская, <u>Н.А. Соболев²</u>,

В.Л. Суханов

Физико-технический институт им. А.Ф. Иоффе Российской академии наук ул. Политехническая, 26, Санкт-Петербург, Россия e-mail: 1-Emelyanov @mail.ioffe.ru, 2-nick@sobolev.ioffe.ru

Практически предшествующие все исследования межзонной (краевой) (ЭЛ) электролюминесценции В монокристаллическом кремнии проводились на диодах с относительно большой площадью выпрямляющего контакта (плоскостных) и при относительно небольших плотностях токов, при которых основным механизмом рекомбинации обычно является рекомбинация Шокли-Рида-Холла. Например, рекордные значения внешней квантовой эффективности ЭЛ ~1% при 300 К [1] были получены при площади р-п перехода не cm^2 . Уменьшение размеров менее 1 выпрямляющего контакта, во-первых, позволяет исследовать ЭЛ при значительно больших плотностях тока. Во-вторых, в таких диодах до стигаются минимальные размеры излучающих объема и поверхности полупроводника. Rтретьих, так называемые точечные диоды (в которых линейные размеры р-п перехода сопоставимы с диффузионной длинной (L_d) неосновных носителей в базе диода или меньше ее) совершенно не согласуются с моделью плоскостного диода. В настоящей работе при комнатной температуре и плотностях тока (J) через p-n переход площадью 0.008 мм² до 36 кА/см² исследована краевая ЭЛ точечного Siдиода.

были изготовлены Диоды на монокристаллической пластине кремния КЭФ-90, толщиной ~350 мкм, ориентированной в плоскости (111), методом газофазного осаждения легированного бором (концентрация бора N_B~10²¹ см⁻³) поликристаллического кремния. На обратную сторону пластины для обеспечения омического контакта при 800°C наносился слой поликристаллического кремния, легированного фосфором (концентрация фосфора $N_{P} \sim 10^{21}$ см⁻³). Поверх поликремния на лицевой и обратной сторонах пластины формировались A1 измерении спектров При электроды. ЭЛ излучение с лицевой поверхности (за краем электрода) фокусировалось на входную щель монохроматора МДР-23 и на его выходе регистрировалось InGaAs неохлаждаемым диодом (с разрешением 6 нм). Спектры были скорректированы с учетом спектральной характеристики фотоприемника И всего оптического тракта. Кинетика ЭЛ измерялась с применением Ge-фотоприемника, обеспечивающего постоянную времени реакции Для возбуждения ЭЛ к диоду ~1 мкс.

прикладывалось импульсное напряжение с частотой 32 Гц. Импульсы имели практически прямоугольную форму при длительности 0.3 мс и временах нарастания и спада <1 мкс. Для определения внешней квантовой эффективности (η_{ext}) Ge-фотодиод, имеющий ампер-ваттную чувствительность К и площадь фотоприемной площадки S_f, помещался на расстоянии L (~7 сантиметров) от излучающей поверхности светодиода так, что L>>S_f^{0.5}. Измерялся фототок Y_f фотодиода, а излучаемая мощность W определялась по формуле : W= $2\pi L^2 Y_f/KS_f$ (1).

На рис.1 приведены измеренные при различных токах нормированные спектры ЭЛ диода. При токах <u>1</u> А они соответствуют спектрам зона-зонной ЭЛ в плоскостных диодах в которых доминирующую роль играет излучательная рекомбинация через экситоны [2]. При токах > 1 А происходит сдвиг длинноволновой части спектра, который может быть обусловлен разогревом диода протекающим и/или током изменением механизма ЭЛ (например, в результате Кулоновского экранирования взаимодействия электронов и дырок в экситонах [3]).

Рис.1. Измеренные при различных прямых токах и нормированные на максимальную интенсивность спектры ЭЛ исследованного диода.

На рис.2 представлены зависимости от тока интегральной мощности ЭЛ диода и $\eta_{ext}.$ Вплоть до средней плотности тока через p-n

переход J~2.5 кА/см² характер зависимостей подобен ранее описанному для плоскостных диодов [2, 4]: по сле небольшого начального

Рис.2. 1 - Зависимость η_{ext} от тока. 2- Зависимость интегральной мощности ЭЛ (W) от тока.

Рис. 3. Измеренная при различных прямых токах кинетика спада ЭЛ точечного Si-диода.

нелинейного участка зависимость W от тока становится практически линейной, а η_{ехt} после начального роста практически перестает зависеть При J>2.5 кА/см² наблюдаются от тока. сублинейная зависимость W от тока и уменьшение η_{ext} . Сопоставление данных на рис.1 и рис.2 показывает, что это не связано с механизма изменением излучательной рекомбинации ИЛИ разогревом образца протекающим током. На линейном участке зависимости интенсивности ЭЛ от тока кинетика спада ЭЛ описывалась экспонентой с постоянной времени $\tau_d \approx 35$ мкс (см. рис.3). При J>2.5 кA/см² кинетика спада описывалась экспонентой с такой же τ_d только после начального более быстрого участка спада ЭЛ. Наблюдаемые при J>2.5 кA/см² зако номерности могут быть связаны с существенным вкладом в безызлучательную рекомбинацию наряду с механизмом Шокли-Рида-Холла Оже-рекомбинации.

Учитывая потери при выводе зона-зонного излучения из кремния (согласно результатам расчетов около 2 порядков величины [5]), внутренняя максимальная квантовая эффективность в описываемом диоде по нашим оценкам составляет почти 3%, а при максимальной плотности тока – около 1 %. Описанное в [1] текстурирование поверхности c-Si может позволить увеличить η_{ext} точечного диода примерно на порядо к соответственно, И. W до ≥3 максимальную величину мВт. Расположив такие диоды равномерно на площади ~2.5x2.5 мм² (всего 16 диодов с шагом ~2L_d~0.52 мм), соединив их параллельно и увеличив ток в импульсе до ~50 А, можно достичь излучаемой мощности диода около 50 мВт при площади, излучающей основную часть мощности, около 6 мм². Такую же мощность можно достичь и при значительно меньшем токе (особенно, если Si использовать технологию -светодиодов, обеспечивающую рекордную η_{ext}, [1]), но при этом придется существенно увеличить излучающую площадь диода. Отметим также, что кроме текстурирования поверхности Si существуют и другие, в некоторых случаях в несколько раз более эффективные решения для увеличения величины внешней квантовой эффективности светодиодов по отношению к ИХ внутренней квантовой эффективности [5]. Но эти решения для Siсветодиодов пока еще требуют соответствующих технологических разработок применительно к современным техническим возможностям.

Работа частично поддержана РФФИ и соответствует планам проектов 04-02-16935 и 06-02-16124.

[1]. Green M.A., Zhao J., Wang A., Reece P.J., Gal M., Nature, **412**, 805 (2001).

[2] Емельянов А.М., Письма в ЖТФ, **30** (22), 75, (2004).

[3] Kane D.E., Swanson R.M., J. Appl. Phys., **73**, 1193 (1993).

[4] Емельянов А.М., Соболев Н.А., Шек Е.И. , ФТТ, **46**, 44 (2004).

[5] Берг А., Дин П.. Светодиоды. Мир, М., 1979, 686 с.

Fabrication, optical characterization and modeling of strained coreshell nanowires.

M-E Pistol, C. Pryor, Z. Zanolli, N. Sköld, L.E. Jensen, M.T. Björk, and L. Samuelson

Solid State Physics/The Nanometer Structure Consortium, Lund University, Box 118, S-211 00 Lund, Sweden

Strained nanowires with varying InAs/InP core/shell thicknesses were grown using Chemical Beam Epitaxy. We also grew GaAs/GaInP core/shell wires with varying core/shell thicknesses by Metal-Organic Vapor Phase Epitaxy. The wires were investigated by transmission electron microscopy and by microphotoluminescence spectroscopy, performed at low temperature. Emission from the core and the shell was observed and its dependence on the shell thickness/core diameter ratio was investigated. We found that it is possible to tune the emission energy by controlling this ratio. We have compared the measured energies with full three-dimensional electronic structure theoretical calculations. Our findings are consistent with the InAs based wires having a hexagonal crystal structure while the GaAs based wires have a zincblende structure. We find in particular that we can tune the emission of the core to the technically interesting wavelength of 1.55 micrometer. We have also calculated the electronic structure of essentially all core/shell wires as a function of core/shell thickness. The materials included were AlN, GaN, GaP, InP, GaAs, InAs, GaSb, AlSb, InSb and their combinations. We find many interesting structures having e. g. metallic shells, polarised excitons, structures containing artificial donors and acceptors (i. e. with a broken gap). This calculation will likely be useful for the design of new core/shell structures.

One of the leading motivations for the study of core/shell structures is the fact that the presence of a shell improves the luminescence efficiency of the core, otherwise (i.e. in uncapped wires) limited by surface states. Moreover, the strain between the two different material will affect the band structure and, consequently, the emission features of the wires: an understanding of this effect allows a tuning of the wire's emission energy (bandgap engineering)

Metal particles act as seed particles for nanowire growth where the interface between the metal and semiconductor is the growing interface. Thus, the nanowires grow with the metal particle on top and the size of the particle defines the diameter of the wire. In this study, Au aerosol particles with diameters of 20 nm and 40 nm were used as the seed particles. The particles are randomly deposited on the substrate surface and then the samples are transferred to the high vacuum growth chamber.

After the growth, the wires were transferred onto a gold patterned Si/SiO₂ substrate which allows easy mapping of the wires. At first, the patterned substrate was investigated by using an optical microscope (100X objective, dark field) to find and map isolated wires suitable for the PL analysis. A further check that the measurements were performed on single nanowires instead of a few of them stacked together was performed by using SEM (Scanning Electron Microscope) after PL. The selected wires were usually separated by more than ~20 μ m from other wires and any other (dust) particle on the substrate.

After the PL experiment, the wires were imaged with SEM and their actual diameter was then measured. Next we calculated the shell thickness using the core diameter estimated with respect to the Au particle size. Those values were used as input for the calculations, in such a way to have a direct comparison between theory and experiment.

In order to determine the bandstructure of the whiskers we first calculated the strain-distribution using continuum elasticity theory [3]. The strainenergy minimization was performed using a finitedifference approximation and we used a grid of 120*120*120 elements. Using the so-obtained strain tensor elements we could then find the local band-gap using linear deformation potential theory. We included mixing of eight bands. We used parameters from the tabulation by Vurgaftman et al. [4]. A typical calculated band structure is shown in fig. 1 where the core and shell thicknesses were equal. The calculations were performed assuming zincblende structures.

Fig. 1 PL spectra for InAs/InP 40nm/10nm (a) and 40nm/20nm (b) as a function of excitation power density. The spectra have been normalized and shifted in intensity for clarity. The state filling at high power and the energy shift due to strain are shown.

We have examined the behavior of the wires at different excitation power density finding evidence of state filling at high laser power. In the presence of a cw laser beam the population of the energy states can be controlled modifying the excitation power density When the latter is increased, states at higher energy will be gradually populated (state filling [5]) and will contribute to the PL emission, since the relaxation to lower energy states is forbidden by the Pauli exclusion principle. The resulting spectra are thus wider and shifted towards higher energy with respect to the ones collected at low excitation power density. This blue shift is demonstrated in the spectra of fig. 1 in the case of InAs 40nm core / InP 10nm shell (fig. 1.a) and a InAs 40nm core / InP 20nm shell (fig. 1.b) wires. We note that the emission from single wires was undetectable for the sample with the thinnest (10nm) shell, so in this case the spectrum shown is obtained by averaging over several wires. This shows the importance of adding a shell to the core to improve the luminescence efficiency, which is confirmed by the more intense emission from wires

The energy of investigated samples was tuned from 0.66 eV to 0.8 eV. When we compare this energy with the calculated energy we find that the experimental energies are about 40 % too high. This discrepancy is too large to be accounted for by experimental or calculational inaccuracies. We find that the core has a wurtzite structure instead of zincblende. Since the calculations assume zincblende structure we deduce that the band-gap of wurtzite InAs is quite a bit larger than for zincblende InAs. There are no reports of experimental data of the bangap of wurtzite InAs in the literature. We have thus calclated the bandstructure of wurtzite InAs using the Local Density Approximation and the GW approximation.

Fig. 2 Calculated band-edges for InAs wires embedded in InP

We will report similar data for GaAs wires embedded in GaInP. The emission is much narrower in this case and the calculations agree with experiments assuming zinc-blende structure. This is confirmed by transmission electron microscopy although there are wires also here having wurtzite crystal structure.

Finally we will report on calculations of all core-shell combinations of III-V materials as a function of coreshell thickness ratio. We find for instance that GaAs shells grown on GaSb are metallic if the shell is sufficiently thin.

References

[1] Niklas Sköld, Lisa S. Karlsson, Magnus W. Larsson, Mats-Erik Pistol, Werner Seifert, Johanna Trägårdh, and Lars Samuelson, Nano Lett., 5, 1943, (2005).

[2] B. J. Ohlsson, M. T. Björk, M. H. Magnusson, K. Deppert, L. Samuelson, and L. R. Wallenberg Appl. Phys. Lett. 79, 3335 (2001).

[3] Landau, L. D., and E. M. Lifshitz, Theory of Elasticity, (Pergamon, London/- Paris1959).

[4] I. Vurgaftman, J. R. Meyer, L. R. Ram-Mohan, J. of Appl. Phys., 5815, 5815 (2001).

[5] P. Castrillo, D. Hessmann, M.-E. Pistol, S. Anand, N. Carlsson, W. Seifert, and L. Samuelson, Appl. Phys. Lett. 67, 1905 (1995).

Короткопериодные W/B₄C дисперсионные элементы для рентгеновской спектроскопии плазмы

М.С. Бибишкин¹, Е.Д. Казаков², В.И. Лучин¹, Н.Н. Салащенко¹, В.В. Чернов¹, Н.И. Чхало¹, А.П. Шевелько^{2,3}

¹Институт физики микроструктур РАН, ГСП-105, ул. Ульянова 46, Нижний Новгород, Россия

²Институт теплофизики экстремальных состояний Объединенного института высоких температур РАН, 125412, Москва, Ижорская 13/19

³Физический институт им. П. Н. Лебедева, 119991, Москва, Ленинский пр. 53

e-mail: kazakov@dap.kiae.ru

Для спектральных исследований плазменных лабораторных объектов, обладающих относительно низким энергосодержанием, необходимы приборы с высокой светосилой. Максимальная эффективность рентгеновских спектрометров достигается в фокусирующих схемах. В работе [1] описан спектрометр, выполненный по схеме Гамоша с кристаллом слюды и ПЗС линейкой в качестве детектора (рис.1). Данный тип спектрометра успешно использовался регистрации для спектров рентгеновского излучения, возникающего при воздействии на мишень наносекундных [1] и фемтосекундных лазерных импульсов [2]. Прибор обладает спектральным разрешением λ/δλ ~ 1000 и высокой светосилой в диапазоне $\Delta \lambda = 1 \div 10$ Å..

Рис. 1. Схема фокусирующего кристаллического спектрометра Гамоша.

При использовании фокусирующих схем с кристаллами возникает ряд трудностей. Вопервых, эффективность этих схем напрямую зависит от радиуса изгиба кристалла (чем меньше радиус изгиба, тем лучше фокусировка). Однако далеко не все кристаллы могут быть изогнуты, сохраняя при этом свою структуру. При изгибе они могут принимать не гладкую, а мозаично ломаную форму, что отрицательно сказывается на разрешающей силе прибора. Кроме того, при выборе кристалла МЫ сталкиваемся с тем, что выбор межплоскостного расстояния у природных материалов не так уж широк. Это приводит к трудностям при измерении некоторых заданных длин волн. Применение кристаллического спектрометра в ВУФ области спектра практически невозможно, так как максимальная величина 2d для природных кристаллов 2d = 26,6 Å (КАР). Это ограничивает измеряемый диапазон по длинам волн сверху величиной λ_{max} ~ 20 Å. Иногда для оптимальной фокусировки необходимо использовать кристаллы, изогнутые по сложным (цилиндрическим, сферическим, тороидальным, и т.д.) поверхностям. Зачастую такой изгиб осуществить на практике крайне сложно технологически или, вообще, невозможно.

В связи с вышесказанным представляется перспективным использование для спектральных приборов в качестве дисперсионных элементов короткопериодных рентгеновских зеркал на многослойных интерференционных основе структур [3]. Достоинством таких зеркал является то, что они могут быть изготовлены с заранее заданным межплоскостным расстоянием $(d = 7 \div 32 \text{ Å})$, причем флуктуация толщины слоев невелика ($\delta d < 0.024 \div 0.05$ Å). Кроме того, незначительна и шероховатость слоев ($\sigma \sim 1 \text{ Å}$), важно для достижения высокого что коэффициента отражения [4]. Существенным является тот факт, что многослойные структуры наноситься на поверхности любой могут (цилиндрические, сложности сферические, тороидальные, гиперболические, параболические и др.). Это позволит создавать спектральные фокусирующие приборы на основе схем, разработанных для изогнутых кристаллов (Гамоша, Иоганна, выбирая И др.), межплоскостное расстояние наиболее удобное для регистрации исследуемого диапазона. Кроме того, при использовании более сложных отражающих поверхностей можно будет получить не только высокое спектральное, но и пространственное разрешение. Многослойные зеркала могут иметь высокий коэффициент отражения благодаря оптимальному выбору соответствующих пар элементов структуры.

В данной работе в качестве диспергирующего элемента вместо кристалла слюды предлагается использовать многослойное рентгеновское зеркало с периодом $d \sim 10 - 15$ Å, несколько превышающим межплосткостное расстояние кристалла слюды (9.95Å). Это позволит не меняя геометрии и материальной Гамоша части спектрометра расширить регистрируемый диапазон в более длинноволновую область, в том числе в окно прозрачности воды. Многослойное зеркало может быть нанесено на плоскую поверхность кристалла слюды с последующим изгибом.

Для оценки спектральных характеристик модернизированного спектрометра Гамоша было изготовлено тестовое многослойное зеркало на основе пары W/B_4C с периодом d = 12 Å. Зеркало было нанесено методом магнетронного распыления на полированную плоскую кремниевую пластину со среднеквадратичной шероховатостью поверхности ЗÅ.

Измерения спектральных характеристик зеркал проводились на стенде, в состав которого входят рентгеновская трубка со сменными анодами, спектрометр-монохроматор РСМ-500, вакуумный рефлектометр и детекторы излучения [5]. В качестве анодов трубки использовали Аl, Си и Fe. По результатам угловых измерений (рис.2) оценено спектральное разрешение λ/δλ зеркала, составившее величины 380, 160 и 140 для линий $\lambda(A1K\alpha)=8.34\text{Å}, \lambda(CuL\alpha)=3.3\text{Å}$ и λ (FeL α)=17.6Å соответственно. Разрешение многослойного зеркала оказалось достаточно высоким для того, чтобы выявить тонкую структуру спектра около основного перехода АІКа (рис.2b). Слева от главной линии $\lambda(AlK\alpha)=8.34\text{\AA}$ наблюдается линия-сателлит λ (AlK α L¹)= 8.28Å [6], соответствующая переходу однократно ионизованного атома Al.

Рис.2. Угловая зависимость коэффициента отражения зеркала W/B₄C: a) λ (FeL α)=17.6Å, b) λ (AlK α)=8.34Å. R_{max} – максимальный коэффициент отражения, $\Delta \theta$ – полуширина кривой отражения.

Таким образом, в данной работе рассмотрена существующего модернизации возможность спектрометра Гамоша расширения для регистрируемого диапазона длин волн. В качестве дисперсионного элемента предлагается использовать короткопериодное многослойное зеркало, напыленное на кристалл слюды с последующим изгибом по цилиндрической поверхности. Изготовлено тестовое плоское многослойное зеркало, которое в диапазоне $\Delta \lambda =$ 8.34 ÷ 17.6 Å имеет спектральное разрешение $\lambda/\delta\lambda = 380 \div 140.$

[1] Shevelko A.P., Kasyanov Yu.S., Yakushev O.F., and Knight L.V., Rev. Sci, Instrum. **73** (10), 3458 (2002).

[2] Агранат М.Б., Андреев Н.Е., Ашитков С.И. и др., Письма в ЖЭТФ, **83**, 80 (2006).

[3] Ceglio N.M., J. X-Ray Sci. Technol. 1, 7 (1989).

[4] Зеркальная рентгеновская оптика. Под. ред.

А.В. Виноградова. Л., Машиностроение, 1989.

[5] Бибишкин М.С., Забродин И.Г., Зуев С.Ю. и др. Материалы совещания «Рентгеновская оптика – 2003». Нижний Новгород. 2003. С. 154.
[6] Jamison K.A., Woods C.W., Kauffman Robert L. Dickel P. 2014.

L., Richard Patrick, Phys. Rev. A 11, 505 (1975).

Характеристики абсорбционных EUV-фильтров при высоких тепловых нагрузках

М.С. Бибишкин¹, С.А. Гусев¹, И.Г. Забродин¹, А.Ю. Климов¹, Е.Б. Клюенков¹, А.Я Лопатин¹, <u>В.И. Лучин¹</u>, А.Е. Пестов¹, Н.Н. Салащенко¹, Н.Н. Цыбин¹, Н.И. Чхало¹, Л.А. Шмаенок² ¹Институт физики микроструктур РАН, ГСП-105, ул. Ульянова 46, Нижний Новгород, Россия ²PhysTeX, Vaals, Netherlands

e-mail: luchin@ipm.sci-nnov.ru

Тонкопленочные абсорбционные фильтры включают в состав рентгенооптических схем, содержащих многослойные зеркала. лпя ослабления отраженного фонового излучения. В зависимости от области применения фильтров выбираются те или иные критерии оценки их качества. При исследовании EUV-источников жесткие требования предъявляются к спектральным характеристикам фильтров [1]. В аппаратуре, предназначенной для вывода на космическую орбиту, особенно важна механическая прочность элементов [2]. При использовании фильтров в системах проекционной EUV литографии [3] на первый план выдвигается требование к их лучевой стойкости, способности выдерживать в течение продолжительного времени тепловые нагрузки, возникающие при воздействии излучения большой средней мощности.

настоящей работе предложена B и реализована простая методика долговременных испытаний, в которой тепловое воздействие на фильтр излучения EUV-источника большой средней мощности моделируется нагревом свободновисящей пленки постоянным электрическим током. Испытательный стенд оснащен системой стабилизации поглощаемой мощности и автоматической регистрации проводимости свободновисящей пленки и ее коэффициента пропускания. Новая методика позволяет следить за динамикой изменения характеристик многослойной структуры в процессе теплового воздействия тока Появляется возможность прогнозировать процессы старения фильтра в условиях долговременной эксплуатации в промышленной установке проекционной EUV-литографии.

Исследования проводились на структуре Zr/Si с количеством периодов N = 23, толщиной слоев материалов в периоде $h_{Zr} = 1.6$ нм, $h_{Si} = 0.6$ нм (общая толщина структуры $h_s = 50$ нм, прозрачность на 13.5 нм T = 76 %). Образец располагался в вакуумной камере с давлением остаточных газов $p = 10^{-6}$ Па. Образец выполнен в виде свободновисящей пленки, закрывающей прямоугольное отверстие (9×10 мм²) в кварцевой подложке толщиной 0.5 мм с размерами 28×22 мм². К двум противоположным сторонам примыкают пленочные контактные площадки с

двумя парами электрических контактов с сопротивлением ~ 1 Ом. Одна пара контактов токоподводящая, вторая используется для измерения сопротивления пленки. Исходное сопротивление свободновисящих структур составляло $T_{s0} = 60 - 70$ Ом для различных образцов, несколько отличавшихся размерами прямоугольного отверстия.

Целью первых экспериментов было выяснение предельных возможностей новой методики, определение характерных параметров, при которых происходит разрушение фильтра или контактов, а также исследование влияния нагрева на электрофизические, структурные и оптические свойства свободновисящей пленки.

Достигнутая в испытаниях плотность мощности (рассеиваемая мощность тока, приходящаяся на единицу площади пленки) составила $q = 6 \text{ Bt/cm}^2$. Продолжительность испытаний при предельной мощности оказалась ограничена примерно одним часом, по истечении которого электрические контакты разрушились. Свободновисящая пленка оказалась прочнее контактной площадки, расположенной на подложке. Пленка осталась неповрежденной и после остывания, наиболее «опасной» стадии термических испытаний фильтра. На рис. 1 представлены фотографии образца, нагретого при $q = 5.7 \text{ Bt/cm}^2$; заметно, что контактные площадки частично разрушены. Методика рассчитана на многодневное тестирование фильтра при несколько меньшей плотности мощности: $q \leq 3 \text{ Bt/cm}^2$.

Рис. 1. Фотографии образца, сделанные с подсветкой (слева) и в темноте (справа). Плотность мощности $q = 5.7 \text{ Br/cm}^2$.

На левой фотографии видны блики подсветки, отраженные от складок фильтра. Складки не влияют на коэффициент пропускания фильтра и равномерность его нагрева. Судя по

изображению светящегося образца (правое всей фото), яркость постоянна по свободновисящей пленки. Заметное части примерно соответствующее свечение, температуре пленки 500°С, появляется при q = 1.5 Bt/cm^2

Долговременные испытания фильтра проводились в течение 8 часов при плотности мощности $q = 3 BT/cm^2$ и более продолжительные -45 часов при q = 1 Вт/см². На рис. 2 приведены временные зависимости плотности рассеиваемой в пленке мощности и ее сопротивления. На стадии нагрева пленки наблюдается уменьшение сопротивления по мере роста плотности выделяемой мощности. При выключении тока сопротивление вновь возрастает. Такая зависимость сопротивления образца от плотности мощности тепловых источников проводимость означает. что многослойной растет Zr/Si увеличением структуры с В температуры. стационарном режиме сопротивление структуры возрастает.

Рис. 2. Плотность мощности электрического тока (1) и сопротивление пленки (2) в зависимости от времени (в стационарном режиме: a) $q = 3 \text{ Br/cm}^2$; b) $q = 1 \text{ Br/cm}^2$).

Наряду увеличением проводимости с многослойной результате структуры в продолжительного теплового воздействия происходят оптических изменения И структурных характеристик пленки, зарегистрированные методами электронной микроскопии и оптической спектроскопии. В публикуемой в настоящем сборнике работе [4] показано, что продолжительное облучение свободновисящей структуры Zr/Si электронным пучком с плотностью потока энергии ~ 1 Вт/см² приводит к образованию силицидов кремния и сопровождается почти двукратным увеличением ее прозрачности в ультрафиолетовом, видимом и ближнем инфракрасном диапазонах.

К аналогичным последствиям приводит продолжительный нагрев многослойной структуры электрическим током. На рис. 3 приведено распределение прозрачности вдоль образца, снятое до и после трехчасового отжига.

Рис. 3. Изменение прозрачности фильтра ($\lambda = 0.633$ мкм) в результате воздействия теплового потока с плотностью q = 3.4 Вт/см² (1 – прозрачность после трехчасового отжига, 2 – исхолная прозрачность).

Как и в работе [4], было зарегистрировано изменение микродифракционной картины пленки после отжига. С ростом величины теплового потока все четче становились кольца, соответствующие нестехиометричной структуре силицида типа Zr_{3-x}Si_{2-y}, и крупнее размеры кристаллитов в поликристалле.

Таким образом, разработанная методика долговременных испытаний EUV-фильтров позволила найти связь между регистрируемой непрерывно проводимостью свободновисящей многослойной пленки и ее структурными и результате, свойствами. В оптическими прогнозировать возможность появилась фильтра условиях старения процессы в долговременной эксплуатации в промышленной установке проекционной EUV-литографии.

Авторы благодарят А.Д. Ахсахаляна и В.В. Рогова за полезные обсуждения, Е.Д. Чхало – за изготовление омических контактов на образцах. Работа поддержана РФФИ.

- [1] Андреев С.С., Зуев С.Ю., Клюенков Е.Б. и др., Поверхность, №2, 6 (2003).
- [2] Mitrofanov A.V., Tokarchuk D.N., Nucl. Instr. and Meth., **A282**, 546 (1989).
- [3] Powell Forbes R., Johnson Terry A., SPIE Proceedings, 4343, 585 (2001).
- [4] Бибишкин М.С., Гусев С.А., Клюенков Е.Б. и др. Настоящий сборник.

Применение краевого экрана и рентгеновской рефракционной линзы для определения размеров пучка электронов Курчатовского источника СИ.

<u>А.Н. Артемьев¹</u>, А.А. Снигирев², В.Н. Корчуганов¹,

А.Г. Валентинов¹, В.В. Квардаков¹, Н.А. Артемьев^{1,2}, А.В. Забелин¹,

В.А. Резвов¹, Б.Ф. Кириллов¹, А.Г. Маевский¹, О.В. Найда¹, А.А. Дятлов¹

¹ Российский научный центр Курчатовский институт, Москва

² European Synchrotron Radiation Facility, BP 220, F-38043, Grenoble, France

e-mail: exafs@nm.ru

Введение.

Поперечные размеры пучка электронов в накопителе являются одной из важнейших характеристик накопителя - источника СИ. Эти размеры в совокупности с величиной накопленного тока и энергией электронов в накопителе определяют яркость источника СИ. Поперечные размеры пучка электронов в накопителе определяются эмиттансом накопителя.

В настоящей работе обсуждается измерение поперечных размеров электронного пучка Курчатовского источника СИ.

Измерения.

Измерения размеров пучка электронов с помощью рентгеновской линзы является весьма распространенным методом см., например, [1].

Курчатовский источник СИ является источником СИ так называемого второго поколения. И горизонтальный эмиттанс электронного пучка с энергией 2.5 ГэВ 9.10^{-8} составляет м•рад. Измеренные И соответствующие проектные размеры пучка электронов приведены в Таблице 1. Различие между измеренными и проектными размерами большой объясняется связью между вертикальным и горизонтальным эмиттансами электронного пучка, достигающей на момент измерений 3.6%, при проектном значении 1%. Причинами большой связи являлись накопившиеся co временем ошибки в вертикальной выставке магнитных элементов приводящие накопителя, к заметным искажениям равновесной орбиты.

На Рис. 1 дан профиль изображения пучка электронов в рентгеновской рефракционной линзе, соответствующий минимуму вертикального размера изображения пучка электронов. врезке Рис. 1 дано Ha изображение соответствующее пучка электронов. Для перехода от размера изображений пучка к размерам самого пучка электронов учитывалось отношение расстояний от источника до линзы и от линзы до пленки. Погрешность эксперимента оценивается 20%. примерно в Аналогичным образом определялся горизонтальный размер источника.

Рис. 1. Вертикальный профиль изображения пучка электронов в рентгеновской рефракционной линзе. Е = 13.25 кэВ. Точки эксперимент, сплошная линия - подгонка по модели Гаусса. Полная ширина изображения на половине высоты - 71 мкм. На врезке показано изображение пучка электронов в рентгеновской рефракционной линзе.

Таблица 1.

Измеренные и соответствующие расчетные размеры пучка электронов для канала 5.6 КИСИ. W - полная ширина источника на половине высоты.

W _{ver} , мкм, экспериме нт	W _{ver} , мкм, paсчет	W_{hor} , мкм, экспериме нт	W _{hor} , мкм, pacчет	
273	273 140 (1% связи)		1130	

После выравнивания орбиты накопителя были проведены исследования размеров пучка электронов при помощи неподвижного краевого экрана. Ранее мы уже использовали метод неподвижного краевого экрана для оценки размеров пучка электронов в накопителе [2].

Для определения качества используемого экрана и разрешения метода в целом фотопленка помещалась на малом – 3 см - расстоянии от экрана. На таком расстоянии ширина производной профиля интенсивности, определяемая размером источника в 1 мм, составит около 2 мкм. На Рис. 2 приведено распределение интенсивности излучения на

фотопленке, определяемое профилем горизонтального и подгонка края экрана, профиля Гаусса под кривую его производной. Полная ширина кривой производной, определяемая, основном, совокупностью В погрешностей экрана и разрешением пленки, не превышает 13 мкм. Такое качество экрана и целом вполне достаточно метода в для регистрации кривых, полученных в настоящей работе.

Рис. 2. Точки - профиль изображения горизонтального края экрана на фотопленке, расположенной на расстоянии 3 см от экрана. Сплошная линия - подгонка по модели Гаусса к производной этого профиля. На вставке показано соответствующее изображение экрана.

Рис. 3. Точки - профиль изображения горизонтального края экрана на фотопленке, расположенной на расстоянии 5.4 м от экрана. Сплошная линия - производная этого профиля. На вставке показано соответствующее изображение экрана.

Затем пленка устанавливалась на расстоянии 5.4 м от экрана. Рис. 3 дает профиль горизонтального края экрана, представляющий вертикальное распределение яркости источника и подгонку профиля Гаусса под кривую его производной. На вставке в Рис. 3 показано соответствующее изображение экрана. Темное поле соответствует засветке пучком СИ; светлое поле – тень экрана. Горизонтальный размер источника определялся аналогично. В Таблице 2 приведены измеренные и соответствующие проектные размеры пучка электронов. Погрешность измерения оценивается в 15%.

Таблица 2.

Измеренные и соответствующие расчетные размеры пучка электронов для канала 5.6 Курчатовского источника СИ. W - полная ширина источника на половине высоты.

W _{ver} , мкм, эксперимент	W _{ver} , мкм, W _{ver} , мкм, ссперимент расчет		W _{hor} , мкм, расчет	
190	198 (2%	1460	1130	
	связи)			

Обсуждение.

Указанная в таблице 2% величина связи вертикальных и горизонтальных колебаний пучка электронов была измерена методами ускорительной физики. Таким образом можно констатировать хорошее совпадение расчетных и измеренных величин поперечного размера пучка электронов.

Отметим, что метод неподвижного краевого экрана достаточно прост. В качестве такого можно применить имеющиеся экрана в установке щели при условии их достаточно Сравнение результатов высокого качества. измерений методом краевого экрана в различных каналах СИ и при различных режимах работы накопителя позволит производить дальнейшую наладку накопителя в режим минимального эмиттанса.

Интересно сравнить рассматриваемый метод измерения размеров источника с методом, использующим рентгеновскую линзу. Рентгеновская линза является прибором, дающим двумерное изображение источника.

Описанный выше метод измерения размеров источника дает результаты, совпадающие с методом получения изображения в рентгеновской линзе только в случае, когда края экрана параллельны главным осям эллипса источника. Если главные оси эллипса повернуты, то метод краевого экрана будет давать величину, равную проекции оси эллипса на линию края экрана.

Работа поддержана грантом Российского фонда фундаментальных исследований №05-02-16702.

[1] T. Weitkamp, O. Chubar, M. Drakopoulos, I. Snigireva, A. Snigirev, C. Schroer, F. Guenzler, B. Lengeler, "Electron beam size and profile measurements with refractive x-ray lenses" Proc. EPAC-2000, Vienna, Austria, p.1824-1826

[2] Артемьев А.Н., Крылов Ю.В., Потловский К.Г., Резвов В.А., Юдин Л.И., Юпинов Ю.Л., "Контроль смещения орбиты электронов и пучков излучения", Атомная энергия, Т. 93, Вып. 6, декабрь 2002, 448-450

Многослойное рентгеновское зеркало в форме эллипсоида вращения

А.А. Ахсахалян, А.Д. Ахсахалян, Е.Б. Клюенков,

А.Я. Лопатин, В.А. Муравьев, В.Н. Полковников,

Н.Н. Салащенко, А.И. Харитонов, В.В. Чернов

Институт физики микроструктур РАН, ул. Ульянова 46, Нижний Новгород, Россия e-mail: akh@ipm.sci-nnov.ru

Для фокусировки рентгеновского излучения от квазиточечного источника с длинами волн $\lambda =$ 0.05 - 0.2 нм применяются хорошо известные скрещенные системы Киркпатрика-Баеза (К-Б), которых наибольшей светосилой срели обладают симметричные системы, состоящие из двух одинаковых скрещенных многослойных зеркал (multilayer Montel elliptical systems -MMES) [1,2]. Зеркала в форме эллипсоида вращения (multilayer rotational elliptic mirror -MREM) обладают существенно большей энергетической эффективностью (в 10-40 раз) по сравнению с MMES за счет большей сагиттальной апертуры [3]. Но даже при одинаковой апертуре MREM и MMES светосила MREM выше из-за однократного отражения излучения от поверхности зеркала, в отличие от двукратного отражения в скрещенных системах.

Кроме того, MMES имеют неустранимую аберрацию из-за того, что источник, помещенный в фокусе одного зеркала, немного сдвинут относительно фокуса другого зеркала [3]. Эти аберрации существенны для источников размером $S^* \le 5$ мкм.

До последнего времени MREM зеркала на практике не использовались из-за сложности их изготовления. На сегодняшний день нам известна только одна фирма, занимающаяся их изготовлением [4].

В настоящей работе приведены результаты исследований MREM, изготовленного с применением ранее развитого метода реплик (рис.1) [5]. В этом методе основные проблемы связаны с изготовлением шаблона с допустимым отклонением формы поверхности от расчетной (≈ 1 мкм). Изготовление шаблона является сложной задачей из-за огромной разницы (до трех порядков) локальных радиусов кривизны вдоль и перпендикулярно оси эллипсоида.

Рис.1 Фотография MREM. Период структуры меняется с 2,4 до 2,9 нм вдоль оси х.

Шаблон из кварца в виде сегмента эллипсоида вращения

с параметрами полуосей A=235 мм, B=6 мм был изготовлен традиционными оптическими методами. Расстояние от центра шаблона до первого и второго фокуса равны соответственно $X_{SC}=118.5$ мм и $X_{CI}=351.5$ мм. Увеличение равно $M=X_{CI}/X_{SC}\approx3$. Длина шаблона l=60 мм.

Форма поверхности шаблона исследовалась методами контактной И оптической профилометрии, И атомно-силовой микроскопии. Измерения на контактном профилометре показали, что в сечении, перпендикулярном оси вращения, получаются окружности с точностью ∆г₁≈1 мкм, что соответствует среднему отклонению локального угла к поверхности от расчетного значения $<\Delta \alpha_{\text{prof}\perp}$ > $\approx 1.10^{-5}$ радиан. В плоскости оси вращения $<\Delta \alpha_{\text{profil}} > \approx 2, 4 \cdot 10^{-4}$ рад (рис. 2(1)).

Измерения формы MREM шаблона с помощью оптического зонда (рис.2(2)) показали, что величина отклонения $<\Delta\alpha_{optic//}> 3\cdot10^{-4}$ рад и вид распределения хорошо согласуется с результатами профилометрических измерений.

Рис.2. Распределение отклонений локальных углов к поверхности шаблона и изготовленного с него MREM от расчетных углов для идеального эллипсоида вращения, измеренное при помощи контактного профилометра (1), оптического зонда (2) и на рентгеновском стенде (3) вдоль оси вращения X.

Микропрофиль поверхности имеет вид волн, расположеных под углами \approx +/- 30° к оси х с несколькими характерными расстояниями между гребнями \approx 20, 5 и 1 мкм (рис.3,4). Такой рельеф, по- видимому, связан с последовательной шлифовкой поверхности шаблона абразивом с различным размером зерна. Среднее отклонение локальных углов к поверхности от расчетных значений из-за наличия такого микропрофиля < $\Delta \alpha_{\rm microACM} > \approx 8 \cdot 10^{-4}$ рад ~ в 2.5 раза превосходят ошибки макропрофиля поверхности (рис.2).

Рис.3. Вид поверхности шаблона (a) и изготовленного с него MREM (b) в оптическом микроскопе с дифференциальным контрастом Номарского. Х- оптическая ось.

Рис.4. Изображение поверхности шаблона в атомно-силовом микроскопе (ACM).

Исследование фокусирующих свойств МREM проводилось на рентгеновском стенде [6] (рис.5). Фокус MREM совмещался с микрофокусом рентгеновской трубки размером *S*=30 мкм. Во втором фокусе помещалась двухкоординатная рентгеновская матрица.

При освещении рентгеновским пучком всей апертуры зеркала в плоскости изображения наблюдалось вытянутое по оси у пятно с размерами $h_y=320$ и $h_z=120$ мкм. При уменьшении саггитальной апертуры $\Delta \varphi_s$ размеры и местоположение пятна фокусировки не менялись, а интенсивность падала пропорционально $\Delta \varphi_s$, что подтверждает то, что сечения перпендикулярные оси x – окружности.

Рис.5. Схема исследования фокусирующих свойств MREM.

При сканировании узкой (50 мкм) горизонтальной щелью вдоль оси *у*, измеряя положение центра пятна h(y(x)), была построена зависимость отклонения локального угла от расчета: $\Delta \alpha_{MREM} = (h(x) - \langle h(x) \rangle)/2X_{CI}$ (рис.2(3)).

Видно, что форма поверхности зеркала частично воспроизводит форму шаблона, но отклонение локальных углов от расчета для зеркала меньше $(<\Delta \alpha_{MREM/}> \approx l \cdot 10^{-4}$ радиан) – зеркало частично сглаживает неровности шаблона. Тот факт, что пятно осталось вытянутым ($h_v = 280, h_z = 120$ мкм) говорит о том, что основной вклад в дефокусировку вертикальную дает микропрофиль поверхности. Оценить величину соответствующего отклонения локальных углов от расчетных значений можно следующим образом. Размер пятна в фокальной плоскости должен быть равен $h^* = S \cdot M = 30 \cdot 3 = 90$ мкм. Получаем для зеркала $<\!\!\Delta \alpha_{MREMmicroll}\!\!>=(h_y)^{-1}$ $h^*)/2X_{CI} \approx 5,4 \cdot 10^{-4}$ рад, что близко, но несколько меньше величины $<\Delta \alpha_{microACM} > \approx 8.10^{-4}$ рад, полученной для шаблона по данным АСМ. Таким образом, зеркало частично воспроизводит макропрофиль (рис.2) и микропрофиль (рис.3,4) шаблона, но глубина волн на поверхности зеркала уменьшается по сравнению с шаблоном.

Проведено сравнение фокусирующих свойств MREM и MMES зеркал с одинаковыми параметрами (A, B, x_C, l) и апертурами ($\Delta \varphi_s, \Delta \varphi_m$). В таблице приведены размеры пятна фокусировки (h_y , h_z), пиковой (I_m) и интегральной ($I_I = I_m \cdot h_y \cdot h_z$) интенсивности в нем для двух размеров источника S = 30 и 100 мкм.

	<i>S</i> ,	$h_y * h_y$	I_m ,	I_I ,
	МКМ	MM	имп.•с	имп. •С ••мм ²
MREM	30	0.31*0.12	500	20
	100	0.51*0.34	730	126
MMES	30	0.13*0.13	1000	16
	100	0.32*0.33	1000	106

Для S = 30 мкм малая пиковая интенсивность для MREM объясняется почти трехкратным уширением пятна фокусировки по оси *у*. Интегральная интенсивность MREM выше: $\gamma = I_{IMREM} / I_{IMMES} = 1.25$. Для S = 100 мкм пятно фокусировки становится значительно более округлым и значения пиковой интенсивности для MREM и MMES становятся почти одинаковыми.

Работа поддержана РФФИ, проект 04-02-17045.

[1] Gutman, G., Jiang, L., Verman, B., US Patent US006041099A. (2000).

[2] Ахсахалян, А.Д., Клюенков, Е.Б., Муравьев,
В.А., Салащенко Н.Н., Поверхность, 1, 86 (2003).
[3] Ахсахалян, А.Д., Клюенков, Е.Б., Муравьев,
В.А., Салащенко Н.Н., Поверхность, 2, 28 (2005).
[4] Siebrecht, R., Dariel, A., Cenada, D. et al., The
7th Int. Conf. on the Physics of Multilayer
Structures. March 7-11, 2004, O5-04. Rusutsu
Resort, Sapporo, Japan.

[5] Akhsakhalyan, A.A., Akhsakhalyan, A.D., Kharitonov, A.I. et al., Central European Journal of Physics, **3**(2), 163 (2005).

[6] Ахсахалян, А.А., Ахсахалян, А.Д., Клюенков, Е.Б. и др., Матер. Симпозиума "Нанофизика и наноэлектроника". Нижний Новгород, 25-29 марта 2005г., 518.

Латеральное смещение рентгеновских пучков и фазовая проблема рефлектометрии многослойных периодических структур

М.М. Барышева, А.М. Сатанин

Институт физики микроструктур РАН, Нижний Новгород, Россия, ГСП-105 e-mail: maria@ipm.sci-nnov.ru

Решение обратной задачи в рентгеновской оптике существенно осложняется отсутствием информации о фазе отраженного сигнала, что является следствием высокой частоты излучения и близости коэффициентов преломления к единице. В данной работе показано, что для многослойных периодических структур (МС) фазовая информация может быть извлечена при исследовании латерального смещения сколимированных волновых пучков, отраженных от МС. Ранее такое смещение, называемое сдвигом Гооса-Хенхен, исследовалось для случаев полного внешнего отражения в оптике [1,2] и для кристаллов в рентгеновском диапазоне [3,4]. Мы исследуем также постранственное распределение волнового поля внутри МС и установим важное соотношение для сдвигов прошедших И отраженных пучков.

Рис. 1 Схема отражения и распространения рентгеновского пучка в МС.

Пусть в начале координат имеется устройство, формирующее гауссовский волновой пучок ширины $w >> \lambda$ (Рис. 1). Поле падающего излучения в этом случае представляется в виде

$$E_0(x, y) = \int_{-\infty}^{\infty} C(p) \exp(i\chi(p)x + ipy) dp, \quad (1)$$

где
$$C(p) = \frac{E_0 w}{2\sqrt{\pi}} \exp(-w^2 (p - p_0)^2 / 4),$$
 (2)

 $\chi = (k_0^2 - p^2)^{1/2}$, k_0 -вакуумное волновое число.

Проанализируем распространение (1) в среде, учитывая, что гармоники отражаются и преломляются независимо с коэффициентами отражения r(p) и прохождения t(p). Мысленно выделим в среде бесконечно узкую полость в точке x_0 (Рис. 1), поле гармоники в

ней запишем в виде $a \exp(i\chi(p)x_0) + b \exp(-i\chi(p)x_0)$. Вводя комплексные коэффициенты отражения r_L , r_R и прохождения t_L , t_R , соответствующие левому и правому сег-мен-ам MC, получим следующие матричные уравнения:

$$\begin{pmatrix} a \\ r \end{pmatrix} = \begin{pmatrix} r_L & t_L \\ t_L & r'_L \end{pmatrix} \begin{pmatrix} b \\ 1 \end{pmatrix}, \quad \begin{pmatrix} t \\ b \end{pmatrix} = \begin{pmatrix} r_R & t_R \\ t_R & r'_R \end{pmatrix} \begin{pmatrix} 0 \\ a \end{pmatrix}.$$

С учетом этих состношений волновое поле внутри системы записывается в виде

$$E(x_{0}, y) =$$

$$\int dp C(p) e^{ipy} \frac{t_{L}(x_{0})e^{i\chi x_{0}} + t_{L}(x_{0})r_{R}'(x_{0})e^{-i\chi x_{0}}}{1 - r_{L}r_{R}'}$$
(3)

и представляет собой суперпозицию пучков, прошедших сквозь левую часть системы отраженных от ее правой части.

Выделяя амплитуды $R^{1/2}(p), T^{1/2}(p)$ и фазы $\varphi_r(p), \varphi_r(p)$ коэффициентов отражения и прохождения, запишем поля на границе MC x = H (H = h либо h + L):

$$E_{r,t}(H, y) = \int_{-\infty}^{\infty} C(p) \begin{cases} R^{1/2} \\ T^{1/2} \end{cases} e^{i(\varphi_{r,t} + \chi H + py)} dp .$$
(4)

Явные выражения для коэффициентов отражения и прохождения периодической МС могут быть получены методом укороченных уравнений [5]. В области резонанса фазы $\phi_{r,t}(p)$ – медленные функции волнового вектора, рассматривая спектрально узкие (по сравнению с ши-риной резонанса) пучки, можно воспользо-ваться разложением S(p)= $\phi_{r,t}(p)$ + χ H+py по 1/wp₀<<1:

$$E(h, y) \cong \frac{E_0}{\sqrt{\pi}} \exp\left(\frac{-1}{w^2} \frac{\partial S(p_0)}{\partial p}\right) e^{I(p_0)} I(p_0), \quad (5)$$

где интеграл $I(p_0)$ не зависит от координат и существует в силу ограниченности области интегрирования шириной пучка w.

В соответствии с (5), отраженный и прошедший пучки испытывают дополнительные смещения вдоль поверхности MC:

$$\delta_{r,t} = -\left(\partial \varphi_{r,t}(p_0)\right) / \partial p > 0.$$
(6)

Формально это выражение имеет тот же вид, что и классическое выражение Гооса-Хенхен [1-4].

В не поглощающей среде фазы коэффициенты отражения и прохождения МС имеют вид:

$$\varphi_t(p) = arctg\left(\frac{u_m th(\gamma_m L)}{\gamma_m}\right), \quad \varphi_r = \varphi_t - \frac{\pi}{2}, \quad (7)$$

где $\gamma_m(p) = \sqrt{\Delta_{+m}\Delta_{-m} - u_m^2(p)}$, коэффициент $u_m = \frac{d}{2\pi m} \left[k_0^2 \varepsilon_0 - (\pi m/d)^2 - p^2 \right]$ имеет смысл

отстройки: в точном резонансе Reu_m=0 и импульс равен бэгговскому волновому вектору: $p=p_B$; $\Delta_{\pm m} = (k_0^2 \varepsilon_{\pm m} d)/2\pi n$ определяет ширину резонанса; ε_m - m-ый коэффициент разложения проницаемости в ряд Фурье, в случае p – поляризованного излучения для $m\neq 0$ $\varepsilon_m \rightarrow \varepsilon_m \cos(2\theta_B)$.

Воспользовавшись (7), получаем:

Отстройка от резонанса(1/нм)

Рис.2. Величина дополнительного латерального сдвига отраженного рентгеновского пучка для Cr/Sc: d=3.14 нм, β =0,47, N=300, λ = 3.12 нм.

Приведем численные оценки для Cr/Sc структуры (без поглощения) с параметрами d = 3.14нм, $\beta = 0,47$, N = 300, m=1. При $\lambda = 3.12$ нм (ε_2 - ε_1) ~ 10⁻² дает $\delta_{r,t}^{dyn} \approx 0.2$ мк. Для $\lambda = 0.154$ нм, (ε_2 - ε_1) ~ 2,5 10⁻⁵, величина сдвига составит 6,4мк, что является экспериментально измеримой величиной.

Графики зависимости величины сдвига от отстройки в случаях поглощающей и непоглощающей (пунктир) сред ($\lambda = 3.12$ нм) приведены на рис. 2,3. Видно, что поглощение оказывает различное влияние на сдвиги отраженного и прошедших пучков, количественно сильнее влияя на прошедший пучок. В приближении слабого поглощения для $p_0 = p_B$ этот результат может быть получен аналитически: $\delta_{r,t} = \delta_0 (1 + \alpha_{s,p})$, где $\alpha_t = \text{Im}(u_m)L$,

$$\delta_{r,t} = \frac{p_0 d}{\pi m \gamma_m} \cdot \frac{1}{\gamma_m^2 + u_m^2 t h^2(\gamma_m L)} \times \times \left(\Delta_{+m} \Delta_{-m} t h(\gamma_m L) + u_m^2 \gamma_m L (t h(\gamma_m L) - 1) \right)$$
(8)

Анализируя (8), нетрудно сделать следующие выводы: 1) $\delta_r = \delta_t$ в отличие от случая Гооса-Хенхен [2]; 2) δ_{rt} соответствует сдвигу при отражении (прохождении) диэлектрического слоя толщиной L в кинематическом и Lex в динамическом пределах соответственно; 3) в динамическом пределе $\delta_{r,t}^{dyn} \propto d/(\varepsilon_2 - \varepsilon_1)$ ($\varepsilon_{1,2}$ - диэлектрические проницаемости веществ МС), что позволяет увеличить δ_{rt}^{dyn} за счет выбора меньших длин волн; 4) смещение максимально при $\theta_{\rm B} \rightarrow 45^{\circ}$ (для р-поляризо-ванного излучения равно бесконечности); 5) р-поляризованный пучок смещается сильнее, чем s-поляризованный, что говорит 0 возможности их пространственного разделения [3].

Отстройка от резонанса(1/нм)

Рис.3. Величина дополнительного латерального сдвига прошедшего рентгеновского пучка для Cr/Sc: d=3.14нм, β =0,47, N=300, λ = 3.12нм.

$$\alpha_r = -(\arg(\Delta_{-m}) + \arg(\Delta_{+m}))^2$$
, δ_0 - смещение для непоглощающей системы.

Таким образом, мы исследовали латеральное смещение отраженных (прошедших) МС волновых пучков и показали, что величина смещения может быть измерена для реальных МС. Изучая смещение пучков, можно получить информацию о фазах коэффициентов отражения (прохождения), что должно облегчить решение обратной задачи. Работа поддержана РФФИ

[1]. Goos F., Hanchen H.// Ann. Phys. 1947. V. 1.

(проекты 04-02-17067, 05-02-17340).

[2]. Fan J., Dogariu A., Wang L.J. // OPTICS EXPRESS. 2003. V. 11. №4. P. 299.

[3]. Андреев А.В., Горшков В.Е, Ильинский Ю.А. // ЖТФ. 1987. Т. 57. № 3. С. 511.

[4]. Berenson R // Phys. Rev. B. 1989. V. 40. P. 20.
 [5].Зеркальная рентгеновская оптика.
 А.В.Виноградов и др. Л.Машиностр. 1989. С.86.

Фазовращатели на основе многослойных рентгеновских зеркал: влияние дефектов

М.М. Барышева, А.М. Сатанин

Институт физики микроструктур РАН, Нижний Новгород, Россия, ГСП-105 e-mail: <u>maria@ipm.sci-nnov.ru</u>

Теоретические исследования многослойных периодических структур (МС) в основном ограничиваются изучением интенсивностей отраженного (прошедшего) сигналов [1]. В последние годы в связи с появлением поляризаторов и фазовращателей на основе МС [2,3,4], все большее значение приобретает изучение свойств фаз коэффициентов отражения и прохождения. Ранее теоретические исследования фазовых свойств выполнялись либо численно [2,3], либо на основе формул Френеля, т.е. без учета многократных процессов взаимодействия волн в МС [2]. В данной работе фазовые свойства MC исследованы на основе укороченных уравнений [1], обсуждается влияние таких дефектов, как поглощение, межслойные шероховатости и флуктуации периода.

Пусть МС толщиной L имеет период d и составлена из пар слоев с толщинами β d, (1- β) и диэлектрическими проницаемостями ε_1 , ε_2 . В этом случае комплексные коэффициенты отражения r_m и прохождения t_m для волны, падающей на структуру под углом θ к нормали вблизи m-го дифракционного максимума могут быть получены из укороченных уравнений [1] в виде

$$r_{m} = i\Delta_{+m}th(\gamma_{m}L)/(\gamma_{m} - iu_{m}th(\gamma_{m}L)),$$

$$t_{m} = \gamma_{m}ch^{-1}(\gamma_{m}L)/(\gamma_{m} - iu_{m}th(\gamma_{m}L)),$$
(1)

где $\gamma_m = \left(\Delta_{+m}\Delta_{-m} - u_m^2\right)^{1/2}$, $\operatorname{Re} u_m$ -отстройка, $u_m = \left[k_0^2(\varepsilon_0 - \sin^2\theta) - q_m^2\right]/q_m$, $q_m = 2\pi m/d$, $\Delta_{\pm m} = k_0^2 \varepsilon_{\pm m}/q_m$, ε_{+m} - m-ый коэффициент разложения диэлектрической проницаемости в ряд Фурье. В случае р - поляризованного излучения для m>0 $\varepsilon_{\pm m} \rightarrow -\varepsilon_{\pm m} \cos(2\theta_B)$. Поскольку ширина резонанса определяется $\Delta = \sqrt{\Delta_m \Delta_{-m}}$, для s-поляризации она оказывается больше в $1/\cos^2(2\theta_B)$ раз.

Для не поглощающей среды $\Delta_{-m} = \Delta_m^*$, Im $u_m = 0$, из (1) следует:

$$\varphi_t = \operatorname{arctg} \frac{u_m th \gamma_m L}{\gamma_m}, \varphi_r = \varphi_t - \operatorname{arctg} \frac{\operatorname{Re} \Delta_m}{\operatorname{Im} \Delta_m}(2)$$

т.е, фазы отраженного и прошедшего сигналов отличаются на константу, поэтому достаточно исследовать одну из них. В случае симметрии МС Im Δ_m =0, откуда ϕ_t - ϕ_r = $\pi/2$ - общее свойство сим-метричных не поглощающих сред.

Фаза φ_t (2) нечетна по и и медленно меняется в резонансной области от $arctg(\Delta L)$ при u=- Δ до -arctg(ΔL) при u= Δ , т.е., в динамическом приближении ΔL >>1, от $\pi/2$ до $-\pi/2$. Вне резонанса φ быстро осциллирует, стремясь к $\varphi \approx$ uL.

Разность фаз $\Delta \phi = \phi_s - \phi_p$ также нечетна, т.е. в резонансной области происходит смена знака $\Delta \phi$, что есть прямое следствие разных ширин резонансов для s- и p-поляризованного излучения; $\Delta \phi$ монотонна в области u $\leq \Delta_p$ и имеет осцилляторный характер вне ее, стремясь к нулю при | uL | $\rightarrow \infty$ (все доказывается на основе (2)).

Имея в виду создание фазовращателей, проанализируем условия, при которых $\Delta \phi$ кратна $\pi/2$. Оказывается, ни для какой МС нельзя получить $\Delta \phi = \pi k/2$ в области $u < \Delta_s$, когда обе поляризации находятся в резонансе со средой; в области $\Delta_s < u < \Delta_p$ число таких точек равно максимальному целому k_{max} , определяемому из условия

$$k_{\max} < \Omega - 1/2$$
, $\Omega = \pi L (\Delta_s^2 - \Delta_p^2)^{1/2}$.(3)

Общее количество точек $\Delta \phi = \pi k/2$ во всем интервале углов $\geq 2(k_{\max} + 1)$, а максимально достижимая величина $\Delta \phi_{\max} \in [\pi(k_{\max} + 1)/2, \pi(k_{\max} + 2)/2]$. Отсюда следует, что для улучшения фазовращательных характеристик MC следует увеличивать $\Omega \propto (\epsilon_1 - \epsilon_2) L \sin(2\theta_B)$, т.е. растить толщину структуры, выбирать компоненты MC с максимально различающимися диэлектрическими проницаемостями и стремить угол Брэгга к 45°. Интересно, что при $\Omega < 3\pi/4$ (заведомо верно в кинематическом приближении) точек $\Delta \phi = \pi/2$ не существует.

Межслойные шероховатости уменьшают Ω в соответствии с $\Omega \rightarrow \Omega \exp(-q^2_m \sigma^2/2)$ (фактор Дебая-Валлера [5]), σ -дисперсия шероховатостей.

Вследствие (2) в не поглощающей среде $(\phi_s - \phi_p)_r = (\phi_s - \phi_p)_t$. В работах [2,3] на основе численных расчетов было показано, что использование МС на просвет позволяет добиться больших сдвигов между s- и p- компонентами, что объясняется ограниченностью области формирования отраженного сигнала экстинкционной длиной. Очевидно, это объяснение не является полным.

Введем слабое поглощение Imu,Im Δ <<Re Δ . Для малых отстроек Reu<<Re Δ в динамическом пределе для симметричной MC получим:

$$\Delta \varphi_r \cong \frac{\operatorname{Re} u}{\operatorname{Re} \Delta_s} \left[1 - \cos^{-1}(2\theta_B) \right],$$

$$\Delta \varphi_t \cong \frac{\operatorname{Re} u}{\operatorname{Re} \Delta_s} \left(1 + \operatorname{Im} uL \right) \left[1 - \cos^{-1}(2\theta_B) \right] - (4)$$

$$- \operatorname{Im} \Delta_s \left(1 - \cos(2\theta_B) \right) L$$

Заметим, что $\Delta \phi_t$ вблизи резонанса больше не антисимметрична, что можно наблюдать в численных расчетах [2]; $\Delta \phi_r$ в этом приближении совпадает со случаем без поглощения; $\Delta \phi_t$ за счет поглоще-ния быстрее растет при увеличении отстройки, причем скорость роста определяется также длиной – ImuL. Варьируя L, можно добиться $\Delta \phi_t = \pi/2$ при любой заданной отстройке, даже нулевой.

Таким образом, именно поглощение в МС является причиной достижения больших фазовых сдвигов при прохождении структуры.

Обсудим теперь влияние флуктуаций периодов на коэффициенты отражения и пропускания и соответствующие фазы. Используя подход, изложенный в работе [6], учтем флуктуации введением модифицированной диэлектрической проницаемости:

$$\varepsilon(z) = \varepsilon_0 + \sum \varepsilon_m(z) \exp(iq_m z + i\mu \Phi(z))$$
, (5)

добавка
$$\mu \Phi(z) = q_m \int_0^z (d(x) - d_0) / d_0 dx$$
 свя-

зана с отклонениями периодов d(x) от номинального значения d₀, малость параметра $\mu \ll 1$ подразумевает $\Delta d/d_0 (L/d_0)^{1/2} \ll 1$. Считаем, что

Рис.1. Дисперсии интенсивности и фазы отражения

 Зеркальная рентгеновская оптика. А.В.
 Виноградов и др. Л. Машиностр. 1989. С. 75-121.
 J.B. Kortright, J.H. Underwood//Nuc.Instr.and Meth in Phys. Res. A291. 1990. P.272-277.

[3] D.-E. Kim, S.-M. Lee, I.-J. Jeon // J. Vac. Sci. Technol. A 17(2). 1999. P.398-402.

[4].С.С. Андреев, М.С. Бибишкин, Н. Кітига и др. //Изв.РАН. Сер.Физ. 2005. Т.69(2). с.207-210.

разные периоды флуктуируют независимо друг от друга по гауссовому закону, тогда, используя теорию возмущений (подобно [6]) в центре резонанса для не поглощающей среды можно вычислить средние и дисперсии коэффициентов и фаз отражения и прохождения. На рис. 1,2 приведена зависимость соответствующих дисперсий от L; в динамическом приближении $\Delta L >>1$:

$$\frac{\left\langle R^2 \right\rangle - \left\langle R \right\rangle^2}{\left\langle R \right\rangle^2} \cong \frac{3}{4} \left(\frac{\mu^2 q_m^2 d_0}{\Delta} \right)^2, \tag{6}$$

$$\frac{\left\langle T^{2}\right\rangle - \left\langle T\right\rangle^{2}}{\left\langle T\right\rangle^{2}} \cong \left(\frac{\mu^{2}q_{m}^{2}d_{0}}{\Delta}\right)^{2}\frac{\Delta L}{16},$$
(7)

$$\left\langle \varphi_{r}^{2} \right\rangle - \left\langle \varphi_{r} \right\rangle^{2} \cong \mu^{2} q_{m}^{2} d_{0} / 4\Delta ,$$
 (8)

$$\left\langle \varphi_{t}^{2} \right\rangle - \left\langle \varphi_{t} \right\rangle^{2} \cong \mu^{2} q_{m}^{2} d_{0} L / 4.$$
 (9)

Можно видеть, что флуктуации сильнее (в ΔL раз) влияют на прохождение, чем на отражение, что естественно, поскольку в сигнал отражения вносят вклад только флуктуации с глубин меньших экстинкционной $1/\Delta$. Однако, такое поведение может приводить к сильному различию свойств на прохождение при практической идентичности отражательных свойств МС, что действительно наблюдается [7].

Выполненные численные расчеты подтверждают и дополняют полученные аналитические выражения. Работа поддержана РФФИ (проекты 04-02-17067, 05-02-17340).

Рис.3. Дисперсии интенсивности и фазы прохождения

[5] Платонов Ю.Я, Полушкин Н.И., Салащенко Н.Н., Фраерман А.А.// ЖТФ. 1987. Т. 57. № 11. С. 2192-2199.

[6] J.B. Shellan, P. Agmon, A. Yariv// J.Opt.Soc. Am. 1978. V. 68 (1). P.18-27.

[7] М.М. Барышева, А.М. Сатанин, Н.И.Чхало// Поверхность. Рент., синхр. и нейтр. исследования. 2006. №2. С.96-101.

О возможности временной компрессии фемтосекундных импульсов излучения рентгеновского лазера на свободных электронах при брэгговском отражении от кристалла

В.А. Бушуев

Московский государственный университет им. М. В. Ломоносова, Ленинские горы, 119992 ГСП-2 Москва, Россия e-mail: vabushuev@yandex.ru

В последние годы ведется активная работа по созданию рентгеновских лазеров на свободных электронах с длиной волны излучения $\lambda \sim 0.1$ нм. Расчеты показывают, что в результате самоиндуцированного усиления спонтанного излучения на выходе ондуллятора формируются многопичковые импульсы с длительностью от долей до десятков фемтосекунд (см. ссылки в [1]). Для управления характеристиками рентгеновских импульсов (РИ) вполне естественно использовать явление дифракции в идеальных монокристаллах.

В работе [1] развита динамическая теория дифракции произвольных рентгеновских импульсов в геометриях Брэгга и Лауэ, которая позволяет рассчитывать пространственно-временное распределение отраженных и прошедших импульсов на любых расстояниях от кристалла с учетом диффузионного расплывания этих импульсов по мере их распространения в пространстве. Показано, что сверхкороткие РИ с длительностью 0.1-1 фс сильно уширяются во времени и искажаются по форме.

В настоящей работе на основе результатов, полученных в [1], исследуется возможность временной компрессии РИ, т.е. уменьшения их длительности в результате брэгговского отражения. Показано, что при падении на кристалл чирпированного импульса, мгновенная частота излучения которого линейно зависит от времени, а фаза - квадратично, возможно практически десятикратное уменьшение длительности отраженного импульса по сравнению с падающим импульсом, имеющим длительность порядка 10 фс. Уменьшение длительности отраженного импульса вызвано тем, что частотный спектр падающего чирпированного волнового пакета уширяется и может быть сравним или даже превышать спектральную ширину плосковолновой кривой дифракционного отражения.

Обсудим возможность временной компрессии (сжатия) РИ, а также получим соотношения для параметров падающего импульса и кристалла, позволяющих осуществлять временную компрессию.

Представим поле падающего квазимонохроматического РИ в виде $E_{in}(t) = A_{in}(t) \exp(-i\omega_0 t)$, где $A_{in}(t)$ - медленно меняющаяся комплексная амплитуда (огибающая волнового пакета). Рассмотрим для определенности гауссов импульс с квадратичной модуляцией фазы $\phi(t)$:

$$A_{in}(t) = \exp[-(t/\tau_0)^2 + i\varphi(t)],$$
 (1)

где $\varphi(t) = \beta(t/\tau_0)^2$. Здесь τ_0 - длительность импульса, β - константа, численно равная фазе амплитуды поля импульса при $t = \pm \tau_0$.

Квадратичная зависимость фазы означает линейную зависимость мгновенной частоты от времени: $\omega(t) = \omega_0 - \beta t/\tau_0^2$. Такой импульс, у которого мгновенная частота меняется со временем, называется чирпированным импульсом, а β - параметром чирпирования.

Длина волны генерируемого излучения определяется выражением $\lambda \approx a/2\gamma^2$, где *a* - период ондуллятора, $\gamma = E/mc^2$, *E* - энергия релятивистского электрона [2]. Можно высказать предположение, что механизм чирпирования обусловлен потерей энергии электронов в ондулляторе ($\leq 10\%$) в результате их индуцированного замедления и группирования в сгустки (банчи) при передаче энергии в виде рентгеновских квантов в поле магнитнотормозного излучения вдоль оси пучка.

Частотный спектр импульса (1) имеет вид

$$A_{in}(\Omega) = [\tau_0/2\pi^{1/2}(1-i\beta)^{1/2}] \times \exp[-\Omega^2 \tau_0^{2/4}(1-i\beta)].$$
(2)

Полуширина этого спектра равна

$$\Delta\Omega_{in} = (2/\tau_0)(1+\beta^2)^{1/2}.$$
 (3)

Видно, что при слабой фазовой модуляции ($\beta << 1$) ширина спектра определяется только длительностью импульса: $\Delta\Omega_{in} = 2/\tau_0$. В случае сильной модуляции ширина спектра увеличивается независимо от знака параметра чирпирования β : $\Delta\Omega_{in} \approx 2|\beta|/\tau_0$ (см. рис. 1).

Рассмотрим теперь брэгговское отражение и прохождение РИ. Спектральное распределение отраженного импульса $A_R(\Omega)$ определяется произведением (см. [1])

$$A_R(\Omega) = A_{in}(\Omega)R(\Omega), \qquad (4)$$

где $R(\Omega)$ - амплитудный коэффициент брэгговского отражения плоской волны в пространстве частот. Спектральная ширина функции $R(\Omega)$ имеет вид

$$\Delta \Omega_{\rm B} = \omega_0 \Delta \theta_{\rm B} {\rm ctg} \theta_{\rm B}, \qquad (5)$$

где θ_B - угол Брэгга, $\Delta \theta_B$ - угловая полуширина

кривой дифракционного отражения. В случае симметричного отражения от толстого кристалла $(d > \Lambda)$ $\Delta \theta_{\rm B} = \lambda/2\pi\Lambda \cos\theta_{\rm B}$. В случае тонкого кристалла с толщиной $d << \Lambda$ (кинематическое приближение) $\Delta \theta_{\rm B} = \lambda/2d\cos\theta_{\rm B}$.

На рис. 1 показан частотный спектр падающего РИ при различных значениях β.

Рис. 1. Спектры $|A_{in}(\Omega)| - l-3$; P_R и R_T - кривые отражения и прохождения. Параметр чирпирования β : l - 0, 2 - 10, 3 - 30; $\tau_0 = 10$ фс, d = 3 мкм, Si(220), $\lambda = 0.154$ нм.

Из (4) следует, что спектральная ширина отраженного импульса $\Delta\Omega_R$ приближенно определяется выражением

$$\Delta \Omega_R \approx \Delta \Omega_{in} \Delta \Omega_{\rm B} / (\Delta \Omega_{in}^2 + \Delta \Omega_{\rm B}^2)^{1/2}.$$
 (6)

Длительность отраженного импульса $\tau_R \approx 2/\Delta \Omega_R$ зависит от соотношения спектральных ширин $\Delta \Omega_{in}$ и $\Delta \Omega_B$ Рассмотрим два предельных случая.

Рис. 2. *1* - падающий импульс, *2* - отраженный импульс при $\beta = 0$, *3* - $\beta = 10$, *4* - $\beta = 30$. Четко видно сжатие импульса (в 4.4 раза) и его расщепление (кривая *4*).

а) Случай длинного импульса, т.е. РИ с узким спектром: $\Delta\Omega_{in} \ll \Delta\Omega_{\rm B}$. В этом случае из (6) следует, что $\Delta\Omega_R \approx \Delta\Omega_{in}$ и длительность отраженного импульса

$$\tau_R \approx \tau_0 / (1 + \beta^2)^{1/2}$$
. (7)

Таким образом, в случае сильной фазовой модуляции ($\beta >> 1$) возможна значительная временная компрессия отраженного (рис. 2) и прошедшего (рис. 3) импульса: $\tau_R << \tau_0$.

б) Случай короткого падающего импульса, т.е. импульса с широким спектром: $\Delta\Omega_{in} >> \Delta\Omega_{\rm B}$. В этом случае из (6) следует, что $\Delta\Omega_R \approx \Delta\Omega_{\rm B}$ и длительность отраженного рентгеновского импульса $\tau_R \approx \tau_h \equiv 2/\Delta\Omega_{\rm B}$ определяется исключительно спектральной шириной кривой дифракционного отражения. Таким образом, импульсы с длительностью $\tau_0 << \tau_h$ в принципе не могут быть компрессированы (рис. 4).

Рис. 3. 1 - падающий импульс, 2 - прошедший импульс при $\beta = 0$, 3 - $\beta = 10$, 4 - $\beta = 30$. Отраженный импульс становится выше и состоит из двух узких пиков.

Рис. 4. Зависимость степени компрессии τ_R/τ_0 от параметра чирпирования β при $\tau_0 = 1$ фс (1), 10 фс (2) и 100 фс (3). Значительная компрессия осуществляется только для импульсов с длительностью $\tau_0 \sim 10$ фс.

В случае толстого кристалла длительность $\tau_h = 2\Lambda \sin\theta_{\rm B}/c$ (например, для отражения Si(220) и $\lambda = 0.154$ нм величина $\tau_h \approx 5.7$ фс). Граничное значение τ_h можно уменьшить, если использовать отражение от тонкого кристалла с толщиной $d \ll \Lambda$, для которого $\tau_h = 2d \sin\theta_{\rm B}/\pi c$. Если, например, $d = 0.1\Lambda$, то $\tau_h = 0.18$ фс. Однако в этом случае резко уменьшится интенсивность отраженного импульса.

Работа выполнена при поддержке РФФИ, гранты № 05-02-16770, № 04-02-16866.

[1] Бушуев В.А. Изв. РАН. Серия физич., **69**, 1710 (2005).

[2] Элтон Р. Рентгеновские лазеры. М.: Мир, 1994, С. 256-265.

Retrieval of High Atmosphere Absorption Profiles from Solar Occultation Data in EUV-XUV Spectral Range

K.P.Gaikovich¹, V.A.Slemzin²

¹Institute for Physics of Microstructures RAS, GSP-105, Nizhniy Novgorod, Russia ²Lebedev's Physical Institute of RAS, GSP-1, Moscow, Leninskiy pr., 53, Russia e-mail: gai@ipm.sci-nnov.ru

Observations of the Sun in the EUV range from LEO satellites are inevitably interrupted by occultations and therefore affected by absorption of solar radiation in the high atmosphere of the Earth. Absorption by atmospheric gases is highly variable depending on solar activity and disturbances of magnetosphere. Measurements in the SPIRIT experiment on the CORONAS-F satellite have shown [1], that at the time of geomagnetic storm absorption in 175-304 A can increase in tens percent during several hours. The solar occultation technique is a powerful tool for atmospheric studies in space experiments (SAGE II, SCIAMACHY, TIMED, CORONAS-F etc.) [1-3]. In Fig.1 one can see the typical scheme of occultation measurements.

Fig. 1. Typical scheme of the occultation experiment

This technique has important advantages: a quasi-global coverage, an instant probing along of a path of several hundreds or thousands of km, short time vertical sampling over a wide height range.

In the case of spectral measurements, besides density distribution, the data may give important information about composition ratios and temperature profile. Regular measurements of absorption of solar radiation during occultations from LEO satellites are very effective for monitoring the parameters of the atmosphere and their perturbations with solar and geomagnetic activity. In particular, the measurements in the EUV-XUV spectral range are especially sensitive for density variations at altitudes ~ 100 - 500 km. Application of this method relates to the common problem of retrieval of volume absorption (extinction) coefficients from measured altitude

profiles of optical depth τ along the ray with the perigee *r*. It is extracted from measurements intensity *I*

$$I(r) = I_0 \exp(-\tau(r)), \qquad (1)$$

where I_0 is the solar radiant intensity outside the atmosphere. From (1) one can easily obtain the integral equation for the optical depths difference $\Delta \tau(r_0) = \tau(r_m) - \tau(r_0)$ for any two rays with perigee r_0 and r_m as and integral of the altitude (radial distance) profile of the absorption coefficient $\gamma(r)$:

(2)
$$\Delta \tau(r_0) = \int_{r_0}^{\infty} \gamma(r) \Delta K(r, r_0) dr = \int_{r_0}^{\infty} \gamma(r) [K(r, r_m) - K(r, r_0)] dr$$

$$K(r,r_{0}) = \begin{cases} \frac{2r}{\sqrt{r^{2} - r_{0}^{2}}}, & r < r_{H} \\ \frac{r}{\sqrt{r^{2} - r_{0}^{2}}}, & r \ge r_{H} \end{cases},$$
(3)

where $r_{\rm H}$ in (3) is the radial distance of the receiver.

The measurements have been carried out at negative elevation angles, i.e. according the limbviewing scheme shown in Fig.1. We have developed an approach for solving the problem of the retrieval of absorption coefficients from the equation (2) that is a Volterra-kind equation in the ill-posed statement considered in [4]. This approach based on Tikhonov's theory of ill-posed problems allows overcoming inevitable limitations inherent in the foregoing modelbased consideration. In particular, this approach makes it possible to retrieve the thin altitude structure of variations of the absorption coefficient.

Here we deal with the problem of the retrieval a function from the solution of (2) over the altitude range that is wider than the range of ray perigee in measurements, including the interval higher than the altitude of receiver. The estimation of the accuracy of retrieval is obtained, as in any ill-posed problem, from results of the numerical simulation, and amounts about 10-20% of profile variations up to altitudes about 550 km. Above this level the accuracy falls drastically.

We applied this method for retrieval of absorption coefficients using the data of occultation measurements with the SPIRIT telescope aboard the CORONAS-F satellite on near circular orbit with a radius $r_{\rm H}$ of about $r_{\rm H} = r_{\rm E}$ +500 km obtained on March 3, 2002, from 2:25 to 03:11 UT and published earlier in [1] (see in Fig.2).

Fig.2. Profiles of the optical depth difference $\Delta \tau(h)$ at wavelength 304 Å for the sunrise (dashed line) and sunset (solid line).

One can see in Fig.3-4 that the absorption profile is retrieved including thin details.

Fig.3. Retrieval of the absorption profile $\gamma(h)$ in the region 230-500 km. Solid line, sunset; dashed line, sunrise; chain lines is best fit of the model profile.

Fig.4. Retrieval of the absorption profile $\gamma(h)$ in the region 350-600.

Results clearly show the possibilities to use the developed method to study the thin structure of the upper atmosphere and its variations.

[1] V. Slemzin, O.Bugaenko, A.Ignatiev, et al. ESA SP-535, 389-392, 2003.

[2] Woods, T. N., F. G. Eparvier, S. M. Bailey, et al. SPIE Proceedings, 3442, 180-191, 1998.

[3] Noël, S., H. Bovensmann, M. W. Wuttke, et al. Adv. Space Res., 29, (11), 1819-1824, 2002.

[4] Gaikovich K.P. Inverse Problems in Physical Diagnostics. Nova Science Publishers Inc., New York, 2004, 304 p.

Внеплоскостная скользящего падения решетка с блеском и радиальными штрихами как эффективный спектральный фильтр для КУФ литографии

Л.И. Горай^{1,2}

¹I.I.G., Inc., U.S.A.

²Институт аналитического приборостроения РАН, Рижский пр.26, Санкт-Петербург, 190103, Россия e-mail: lig@skylink.spb.ru

Для разделения широкополосного эмиссионного спектра, получаемого от лазернои разрядно-плазменных источников мощного КУФ и МР излучения, необходимо использовать специализированный фильтр. Применение отражающей дифракционной решетки с блеском, работающей во внеплоскостной скользящей конфигурации, является одним из эффективных и относительно простых способов, позволяющих отделить полосу в 2% окрестности длины волны 13.5 нм.

Относительная эффективность в диапазоне 0.95-1.0 и коэффициенты отражения в диапазоне 0.79-0.95 могут быть получены для внеплоскостной решетки, облучаемой под углами от 72° до 84° неполяризованным светом КУΦ коллектора (рис.1), что выше решетки эффективности плоскостной [1]. Интегральная абсолютная эффективность одной решетки, работающей в широком сходящемся пучке, значительно уменьшается по сравнению с максимальным значением. однако это может быть компенсировано с помощью сегментирования решетки.

Для отделения требуемого спектрального диапазона И получения рекордной эффективности и стигматической фокусировки изображения при высокой дисперсии соседних порядков в данной работе используется модель плоской высокочастотной решетки, имеющей радиальную геометрию штрихов. Предлагаемое решение, помимо других преимуществ, готово для внедрения, основанного на новейшей профилирования. технологии записи И копирования пилообразных решеток. Данная технология включает анизотропное травление вырезанных под определенным углом Si пластин для формирования заведомо гладких граней штрихов (СКО шероховатости \leq 0.2 нм), сканирующую интерференционную литографию для изготовления большого размера (ø ≤ 300 мм) мелко-шаговых решеток (≥ 100 nm) и наноимпринт литографию для репликации решеток с хорошей воспроизводимостью при низкой себестоимости. Автор не утверждает, что подходит только указанная технология, скорее для предпочтительнее изготовления она подобных решеток. Для отвода тепла, вызываемого излучением, решетка на Si может быть активно охлаждена различными способами [2].

Исследуемая плоская решетка лолжна работать в широком сходящемся пучке КУФ коллектора, что приводит к большой разнице между скользящими углами падения на ее противоположные стороны. Для решетки с прямолинейными штрихами это обуславливает аберрации в дифракционном порядке, которые могут быть эффективно компенсированы путем изменения шага решетки, как функции расстояния вдоль оптической оси. Для внеплоскостной установки ЭТО ведет к изготовлению штрихов, имеющих радиальную геометрию, благодаря чему убираются аберрации первого порядка [3]. Аберрации второго и более высоких порядков могут быть практически устранены для заданной длины волны коррекции путем перехода к веерной решетке с переменным угловым расстоянием между штрихами. Современные технологии изготовления дифракционных решеток, в т.ч. упомянутая выше, позволяют получать решетки с переменным шагом И радиальными штрихами.

Рис.1. Относительная и абсолютная эффективности –1 порядка Мо 5000 штр./мм решетки с углом блеска 7.5°, рассчитанные при падении излучения с длиной волны 13.5 нм под полярным углом 7.5° в зависимости от азимутального угла внеплоскостной установки.

Эффективность решетки скользящего падения, изготовленной вышеупомянутым способом и предназначенной для Отражающего Решеточного Спектрометра станции Constellation-X, недавно исследовалась в [4]. Внеплоскостные ТЕ и ΤM компоненты эффективности для тестовой решетки 200-нм периода с номинальным углом блеска 7.5°, изготовленной на Si пластине диаметром 100 мм, измерялись на источнике поляризованного синхротронного излучения и сравнивались с данными расчетов программы PCGrate®-SXTM, основанной на строгом интегральном методе. Экстремально высокая эффективность -1 порядка ~ 0.45 наблюдалась в эксперименте на длине волны ~ 2.5 нм ТЕ поляризованного излучения, падающего на покрытую Аи импринт решетку.

Рис.2. (а) АСМ сканы поперек штрихов Au 5000 штр./мм импринт решетки вблизи ее центра. (б) Гистограмма углов пар точек на АСМ сканах, дающая измерение среднего угла блеска.

Рассчитанные и измеренные эффективности находятся в количественном согласии при использовании усредненного профиля штриха, полученного на основе данных АСМ измерений. На рис.2(а) представлены АСМ сканы поперек штрихов, где каждый скан смещен вертикально на 1 нм для удобства просмотра. СКО точек от кривой усредненного скана равняется 0.89 нм, что является мерой шероховатости. Гистограмма углов между каждой парой точек сканов показана на рис.2(б), где распределение углов промоделировано гауссовой кривой. Вершинки в углах профилей штрихов скруглены, что приводит к довольно широкому распределению углов с центрированным значением 13°. Среднее значение угла блеска, измеренное в семи точках, распределенных по заштрихованной площади, меняется от 8.9° до 15°, а значение СКО шероховатости меняется от 0.66 нм до 0.92 нм. Таким образом, вариации штрихов на 5 см записанной площади значительны. АСМ измерения, полученные до нанесения Ті/Аи покрытия импринтированной решетки, дают шероховатость, приблизительно 0.2 нм и угол блеска около 8° [4], что свидетельствует о заметном изменении профиля штриха после нанесения металлических пленок на полимерный резист импринта.

Аналогичный реальный (т.е. ACM измеренный) профиль штриха и пилообразные профили с различными периодами и углами блеска использовались при моделировании настоящей эффективности в работе. Относительная > 0.77 и абсолютная ~ 0.72 эффективности достигаются в -1 порядке Мо решетки с АСМ измеренным профилем и учетом 0.5 нм СКО шероховатости на длине волны 13.5 неполяризованного света в заданном HM диапазоне углов падения (рис.3).

Рис.3. Относительная и абсолютная эффективности –1 порядка Мо 5000 штр./мм решетки с АСМ измеренным профилем штрихов и СКО шероховатости 0.5 nm, рассчитанные при падении излучения с длиной волны 13.5 нм под полярным углом 7.5°, как функция азимутального угла.

1. H. Kierey, K. Heidemann, B. Kleemann, *et al.*, SPIE Proc., **5193**, 70 (2004).

2. A. Chumakov, R. Rüffer, O. Leupold, *et al.*, J. Synchrotron Rad., **11**, 132 (2004).

3. W.C. Cash, Appl. Opt., 22 (24), 3971 (1983).

4. J.F. Seely, L.I. Goray, B. Kjornrattanawanich, *et al.*, Appl. Opt., **45** (8), 1 (2006).

Зонарная микроструктура кристаллов и их оптическое совершенство

С.С.Гуськов, М.А.Фаддеев, Е.В.Чупрунов

Нижегородский государственный университет имени Н. И. Лобачевского, пр. Гагарина 23,

Н. Новгород, Россия e-mail: gss10@narod.ru

Лля большинства природных и монокристаллов синтетических характерен дефект, известный как зонарная микроструктура, полосчатость или слоистость. Этот дефект чередующихся слоев проявляется в виде неодинакового качества, параллельных фронту кристаллизации. Характерный период зонарной структуры составляет единицы и десятки микрометров. Согласно современным представлениям [1], разница свойств слоев обусловлена неравномерным распределением примеси и вызванными атомами или молекулами примеси механическими напряжениями в кристалла. Для формирования структуре полосчатости лостаточно минимальных концентраций примеси (≤ 0,01%). Зонарную необходимо структуру учитывать при применении кристаллов. В частности, возможно ухудшение свойств кристаллов, используемых в лазерной технике в качестве разного рода оптических элементов.

Причины неравномерного распределения примеси изучены слабо. Считается, что зонарность может быть обусловлена колебанием Данная работа направлена на исследование зонарной структуры кристаллов, анализ факторов, влияющих на зонарность и объяснение механизмов ее образования.

Предлагается механизм образования слоев примеси за счет накопления примеси в растворе у поверхности растущей грани и последующего лавинообразного встраивания примеси при превышении критического уровня концентрации. Разработана математическая модель роста двухкомпонентного кристалла. С помощью численного статистического моделирования показана возможность формирования как однородного распределения практически примеси в кристалле (рис.1б), так и квазипериодической зонарной микроструктуры (рис.1в). Установлено, что вариант захвата примеси определяется значениями энергии связей примесь-основное вещество є12 и примесь-примесь ε_{22} . Область зонарности в осях $\epsilon_{12}/\epsilon_{11}-\epsilon_{22}/\epsilon_{11}$ (рис. 1a) смещается при изменении энергии связи ростовых единиц основного вещества ε_{11} , пересыщения σ , температуры T и концентрации Получено примеси С.

Рис.1. Варианты распределения примеси (а): равномерное (светлая область, б) и квазипериодическое (темная область, в).

внешних условий роста (температуры, пересыщения) за счет конвекционных потоков. С другой стороны, на дефектность должны влиять процессы, происходящие на поверхности растущей грани [2]. Неравномерный захват примеси может быть результатом конкуренции холмиков роста, связанных с винтовыми дислокациями разного наклона. качественное согласие с результатами экспериментов.

[1] Современная кристаллография. Т. 3. — М.: Наука, 1980.

[2] Физика кристаллизации. — М. Изд-во Физико-математической литературы, 2002.

Изучение распределения интенсивности рентгеновского излучения сформированного волноводом-резонатором с разновеликими рефлекторами

Егоров Е.В., Егоров В.К.

ИПТМ РАН, Черноголовка, Московской области, 142432 Россия e-mail: egorov@ipmt-hpm.ac.ru

Проведенные ранее исследования явления волноводно-резонансного распространения потока рентгеновской радиации в основном ориентировались на выяснение сути явления [1,2]. В тоже время для построения устройств, функционирующих на его основе, весьма существенным оказываются методические и технологические особенности изготовления рефлекторов, являющихся важнейшими узлами плоских рентгеновских волноводов-резонаторов (ПРВР). До настоящего времени остается не ясным, какова наиболее эффективная форма торцов рефлекторов. Не выяснен вопрос о необходимом и достаточном уровне качества полировки торцевых поверхностей. Не очевидна степень влияния на пространственное распределение интенсивности в пучке на выходе ПРВР неравенства возможного длин составляющих его рефлекторов. Причем ответ на последний вопрос имеет прямую практическую значимость, поскольку некоторые рентгенооптические схемы рентгенофлуоресцентных спектрометров, функционирующих в условиях полного внешнего отражения возбуждающего пучка от поверхности исследуемой мишени (ΡΦΑ ΠBO) при

Рис. 1. Экспериментальные схемы для изучения пространственного распределения интенсивности излучения в пучках, сформированных стандартными плоскими рентгеноводами (a1) и рентгеноводами с разновеликими рефлекторами (б1). Внизу показаны примеры экспериментально полученных распределений (a2, б2). l_1 =50 мм, l_2 =100 мм, l_2 =75 мм, l_2 =25 мм, l_3 =80 мм, l_4 =230 мм, A – ослабитель (K_{Fe} =1000), s – ширина щелевого зазора.

формировании этого пучка с помощью ПРВР, предполагают существенную размерную разновеликость составляющих его рефлекторов [3]. Данная работа посвящена изучению влияния именного этого фактора на параметры потока излучения на выходе волновода-резонатора.

При рассмотрении степени неравенства длин рефлекторов следует различать макро и В микроразновеликость. соответствии с концепцией, развитой в наших предыдущих работах, в случае равновеликости длин рефлекторов пространственное распределение излучения в потоке на выходе волноводарезонатора имеет симметричное очертание, близкое по форме к распределению Гаусса (рис. 1,а2). Если один из рефлекторов оказывается длиннее другого, то некоторая часть этого потока будет испытывать полное внешнее отражение на поверхности выступающего vстvпа. Условно можно принять, если симметрия пространственного распределения излучения в потоке заметно не искажена, то считаться рефлекторы могут микроразновеликими. И. наоборот, при значительной асимметрии распределения, рефлекторы можно рассматривать как макроразновеликие. Условная граница между микро и макроразновеликостью определяется размером выступа, который приводит к полному внешнему отражению половины потока на выходе ПРВР. Эта величина оказывается около 0.1 мм. Мы экспериментально исследовали потоки излучения FeKаβ на выходе кварцевых ПРВР с макроразновеликими рефлекторами с шириной рентгеноводной щели в области мкм. размеров 0.02÷20 перекрывающие характерные размерные интервалы, для волноводно-резонансного распространения многократного излучения, его полного отражения и интервала, соответствующего смене механизма распространения излучения.

В верхней части рисунка 1 показаны использованные нами геометрические схемы сравнительного изучения лпя пространственного распределения излучения в потоках на выходе ПРВР и рентгеноводов, функционирующих на базе многократного полного внешнего отражения, изготовленных с использованием равно разновеликих И рефлекторов при одной и той же ширине плоского протяженного зазора. Геометрии характеризовались единственным отличием - в плоских рентгеноводах один из рефлекторов длиной 100 мм заменялся на рефлектор длиной 75 мм. Торцы всех рефлекторов имели прямоугольное сечение и были обработаны по 14 классу чистоты. В нижней части рисунка показаны сравнительные пространственные распределения для характеристической составляющей потоков рентгеновских лучей, сформированных плоскими рентгеноводами обоих типов для щелевых зазоров различной ширины.

Для области размеров щелевых зазоров, волноводно-резонансному соответствующих распространению излучения FeKαβ (s≤200 нм), форма распределений на выходе рентгеноводов с разновеликими рефлекторами близка по очертанию к половине распределения Гаусса, причем положение максимума огибаюшей демонстрирует слабую тенденцию к увеличению сдвига от плоскости симметрии ПРВР по мере увеличения ширины щелевого зазора. Для широкощелевых рентгеноводов величина сдвига оказывается соизмеримой с полушириной Интегральные интенсивности распределения. рентгеноводами, потоков, сформированных образованными равно И разноразмерными рефлекторами, равны с точностью до статистического разброса. Поскольку полуширина пространственных распределений в излучений. сформированных потоках рентгеноводами (и, в частности, ПРВР) с разновеликими рефлекторами, меньше чем в распределениях, соответствующих рентгеноводам конструкции, обычной средняя плотность излучения В этих потоках оказывается приблизительно в 2 раза выше. Следовательно, можно ожидать, что при использовании в РФА ПВО спектроскопии пучка возбуждения. сформированного волноводом-резонатором С разновеликими рефлекторами, выход вторичной флуоресценции окажется приблизительно в 1.4 раза выше, по сравнению с использованием обычных ПРВР. Однако при этом оказывается точно выбрать крайне существенным пространственное положение поверхности исследуемой мишени. Если ее положение окажется точно соответствующим оси симметрии ПРВР. то выход вторичной рентгеновской флуоресценции окажется ничтожным. Таким образом, в результате проведенных исследований для показано. построения что высокоэффективного РФА ПВО спектрометра необходимо точно подбирать местоположение исследуемой мишени в пространстве. Кроме того, может быть предложена простая геометрическая модель расчета этого положения. К сожалению, в настоящее время еще не выработан жесткий критерий технологический единообразного позиционирования в пространстве поверхности мишеней с необходимой метрической и угловой использования специальной точностью без гониометрической головки.

Работа выполнена при частичной финансовой поддержке РФФИ (проект №06-02-17406 и 06-02-16284).

[1] Егоров В.К., Егоров Е.В. // Поверхность (рент. синх. нейтр. исследования). №12. 2005. стр. 24-46. [2] Едогоv V.K., Едогоv Е.V. // Spectrochimica Acta. B59. 2004. р. 1049-1069.

[3] Егоров В.К., Егоров Е.В. // Поверхность (рент. синх. нейтр. исследования). №7. 2005. стр. 5-12.

Применение метода рентгеновской топографии для анализа резонаторов на объемных акустических волнах

<u>Д.В. Иржак¹</u>, Д.В. Рощупкин¹, Д.В. Пунегов¹, С.А. Сахаров²

¹Институт проблем технологии микроэлектроники и особочистых материалов РАН, г. Черноголовка, Россия ²ФОМОС-Материалс Со., Москва, Россия e-mail: irzhak@ipmt-hpm.ac.ru

Резонаторы на объемных акустических волнах применяются, основном. в лпя стабилизации частоты ультразвуковых ипи электромагнитных колебаний. В настоящее время основным материалом для изготовления таких устройств служат кристаллы α-кварца (α SiO₂). Одно из самых ценных свойств кварца – это термостабильность, т.е. независимость пьезоэлектрических и упругих характеристик от температуры. В последнее время все более широкое применение находит еще один материал, обладающий термостабильными время, срезами, и, в тоже значительно превосходящий кварц по величине коэффициента электромеханической связи кристаллы группы лантангаллиевого силиката (лангасит La₃Ga₅SiO₁₄, лангатат La₃Ga₅₅Ta₀₅O₁₄). В данной работе представлены результаты исследования возбуждения объемных акустических волн в резонаторных структурах на основе кристаллов лангасита и кварца с метода рентгеновской использованием топографии.

B настоящее исследования время волнового поля акустически пьезоэлектрических кристаллах проводятся с использованием растровой микроскопии. электронной Ha изображение рисунке 1 представлено распределения волнового поля в акустическом резонаторе, полученное с использованием

Рис.1. Изображение распределения волнового поля акустического резонатора, полученное в растровом электроном микроскопе.

данного метода. Светлый контраст соответствует отрицательному поверхностному потенциалу, который увеличивает вторичную электронную эмиссию с поверхности кристалла, а темный положительному контраст соответствует поверхностному потенциалу, который уменьшает вторичную электронную эмиссию с поверхности кристалла. Перепады яркости на изображении акустического поля при определенных условиях соответствуют значениям сопутствующих перепадов потенциала между областями сжатия И Недостатком растяжения. данного метода является то, что визуализируется электрический потенциал, возникающий только на свободной поверхности резонатора.

Благодаря высокой проникающей способности рентгеновского излучения, метод рентгеновской топографии позволяет исследовать поля деформации, вызванных распространением акустических волн в пьезо- и сегнетоэлектрических материалах пол нанесенным на поверхности металлическим электродом.

Исследования проводились на источнике рентгеновского излучения с вращающимся молибденовым анодом методом рентгеновской топографии в геометрии Лауэ. Дифрагированное на кристалле излучение регистрировалось на пленку "Kodak electron image film" с размером зерна эмульсии 0,2 мкм, которая располагалась на расстоянии 20 мм от исследуемых образцов. Исследовались резонаторы на объемных волнах (OAB), серийно акустических выпускающиеся в промышленных условиях, из кварца (АТ срез, отражение (11-2)) и лангасита (отражение (012)) с резонансными частотами 35,2 МГц и 7,89 МГц, соответственно. Во втором случае для возбуждения акустической волны использовалась первая и пятая гармоники (39,45 МГц).

На рисунках 2 и 3 продемонстрированы топограммы с изображением волнового поля ОАВ в кварцевом резонаторе. Отчетливо видна структура поля деформации в подэлектродной области, причем изображение на рис. 2 местами инвертировано относительно изображения на рис. 3. Угловое расстояние между положениями, в которых были получены топограммы, составляло 55 угловых секунд. К сожалению, полученные результаты не дают возможности оценить значение деформации, вызванной распространением ОАВ в кристалле, так как

Рис. 2. Топограмма волнового поля ОАВ в кварцевом резонаторе.

исследовавшийся образец изначально находился в механически напряженном состоянии, что видно из характера рефлексов на представленных топограммах.

Рис. 3. Топограмма волнового поля ОАВ в кварцевом резонаторе, полученная при отвороте образца на 55 угл. сек. по отношению к положению съемки топограммы на рис. 2.

На рисунках 4 и 5 представлены топограммы волнового поля ОАВ в резонаторе на кристалле лангасита, полученные на частотах возбуждения ультразвука, соответствующих первой (7,89 МГц) и пятой гармоникам (39,45 МГц). Распределение поля деформации, вызванного ОАВ, возбужденной на первой гармонике, является достаточно периодичным (рис. 4) и соответствует сдвиговым колебаниям в акустическом резонаторе. Направление распространения ультразвука в резонаторе соответствует кристаллографическому направлению [100].

Рис. 4. Топограмма волнового поля ОАВ в резонаторе, изготовленном из кристалла лангасита, частота возбуждения 7,89 МГц.

На рисунке 5 представлена топограмма, того же резонатора, полученная при частоте возбуждения ОАВ 39,45 МГц. Изменение частоты привело к изменению структуры поля деформации, вызванного распространением ОАВ

Рис. 5. Топограмма волнового поля ОАВ в резонаторе, изготовленном из кристалла лангасита, частота возбуждения 39,45 МГц (пятая гармоника).

в кристалле. Дефекты кристаллической структуры (дислокации), незаметные на топограммах резонатора без ультразвука и при возбуждении его низкочастотными колебаниями, в данном случае видны совершенно отчетливо.

Работа выполнена при поддержке РФФИ, грант № 04-02-16456

N.N.Kochevsky Byelorussian State University, Minsk, Belarus e-mail: <u>kolchevsky@bsu.by</u>

1. Introduction

The refractive x-ray optics starts after publication of experimental results on refractive xray lenses in 1996 [1]. For x-rays with energy 5-100 keV the lenses of radius 5-500 microns are used, with transmission up to 1 % and focal length equals to 0,2-2 m. Refractive lenses are widely used with powerful synchrotrons of the third generation: APS (USA), ERSF (France), SPring-8 (Japan). To the present time number of designs of x-ray lenses are known, for example: microcapillary refractive lens made as a glass capillary in radius 100-500 microns containing a set of 100-300 biconcave lenses [2]. One of lacks of refractive lenses is the small aperture of a lens: the aperture of X-ray refractive lenses is less then one millimeter in size, at the same time size of a synchrotron beam is equal several millimeters. The systems on the basis of threedimentional arrays of refractive lenses for increasing aperture is proposed in [3].

2. Model of the refractive lens

So wave length of hard x-ray is much less than general sizes of lenses, the principles of geometrical optics for the description of distribution of x-ray radiation in system of lenses are appropriated. As the sizes of a lens about 100-500 micro meters and the source situated at distance exceeding focal distance and the absolute angle of a beam to an optical axis is extremely small (about 10³-10⁴), it is possible to accept, that the x-ray beams are parallel of an optical axis in lens. As optical way of x-ray beams through the system of N lenses is increased in N times to comparison with way in one lens, it is possible to propose the lens model which assume that system of lenses acts as one thin lens with a complex refraction index expressed as:

$$n=1-\delta N + i\beta N, \qquad (1)$$

where β - is the index related to the absorption of Xrays. The focal depth dF and the size of the lens focal spot R_{diff} are defined by X-ray absorption.

One of the promising way is to produce short focal lens with large aperture. The focal length depends on the number of individual lens of "thick" compound lens. Optical properties of the "thick" lens depends on the lens lenth. Minumum of the focal length of a "thick" lens and the maximum number of individual lenses for "thick" lens is the function of lens material. The maximum number of individual lenses for "thick" lens defines as:

$$N_{max}=1,3 / (\delta)^{1/2}$$
. (2)
where δ -is the decrement of refraction index

(n=1-δ).

3. Optical system of the two refractive lenses

Optical systems on the base of one X-ray lens is produce inverted image of the object. Optical system on the base of two compound refractive lens is possible to produce real images of the object. On the base of such systems it is possible to produce mosaic images of large objects by using arrays of the X-ray lenses. Distance between lenses must be at least four focal length for producing image equal the object in size, so for producing images of object it is necessary to use short focal length lens. Intensity distribution in the focal spot defines by distances between lenses. Calculations were made for optical system with two lens consists of 100 individual lenses, lens radius is equal to 100 microns, distance between lens and source equals 0,26m. Calculation of such parameters were made with 8 keV X-rays. Intensity of the focal point define by distances between lenses and focal depth. Focal depth is equal to several millimetres. Intensity of of the focal spot is greatly depend on displacement of the source from the optical axis.

The X-ray spectrum on the output of refractive lenses is determined by a source of radiation, spectral dependences of absorption and refraction factors of substance, geometrical parameters of a lens. The dependence of factor of refraction of substance on wavelength results in spatial division of focal spots for "high-energy" and "low energy" part of a Xray spectrum. For 'low energy" part absorption of x-rays limits the aperture of a lens. For a "high-energy" part the aperture of a lens limits by spherical aberration for microcapillary lenses.

Microcapillary refractive lenses allow to focus from x-rays up to optical radiation. For optical part of a spectrum the x-ray lens is transparent and acts as diverging lens. Due to small radius of a lens the optical force of a diverging lens will be high. Thus, using sources with wide spectrum of radiation (for example plasma sources), the focal spot of the lens will contain only x-ray radiation of a narrow spectral range (~1 keV).

References

1. A.Snigirev, V.Kohn, I.Snigireva, B.Lengeler, "A compound refractive lens for X-ray focus", Nature 384 (1996) 49.

2. Yu.I.Dudchik, N.N.Kolchevsky "A microcapillary lens for X-rays", Nucl.Instr.Meth.A 421(1999)361.

3. M.A.Piestrup "Large area X-ray and neutron imaging using three-dimentional arrays of microlenses" Rew.Sci.Instrum. V.75.N.11.(2004)4769.

Измерение спектра рентгеновского излучения лазерной плазмы с помощью изогнутого многослойного зеркала

Ю.Л. Лобанова, А.Н. Субботин, П.Д. Гаспарян, Е.С. Цой, Н.А. Суслов

Российский Федеральный Ядерный Центр ВНИИЭФ, ул. Мира 37, г. Саров, Россия

e-mail: july1@rol.ru

Введение

В течение 2004-2005г. во ВНИИЭФ для тестирования расчетной модели горячей многозарядной плазмы проводились серии опытов на лазерной установке ИСКРА-5 с плоскими мишенями. В этих опытах исследовалась зависимость выхода и спектра рентгеновского излучения (РИ) при различных уровнях облучения мишени лазерным излучением (ЛИ) на второй гармонике йодного лазера с длиной волны 0.66 нм. Спектры РИ измерялись с помощью изогнутого Ni/C многослойного зеркала (МЗ) и с помощью изогнутого кристалла КАР. Расчеты проводились с помощью программы СС9 [1].

Использование МЗ в измерениях позволяет существенно упростить редакцию измерений. Высокая отражательная способность зеркала дает возможность использовать фотоприемник с небольшим динамическим диапазоном регистрации, например, рентгеновскую пленку и размещать спектрограф на большом удалении от источника. Привязка энергетической шкалы спектрографа проводилась при помощи алюминиевого поглотителя со скачком фотопоглощения 1.55 кэВ. Для абсолютной нормировки результатов спектральных измерений дополнительно регистрировалось РИ полупроводниковыми детекторами.

В работе представлены экспериментальные и расчетные данные спектра РИ из мишеней, проведено их сравнение.

Измерения спектра из Ge-мишени

Опыты проводились с целью изучения условий создания инверсной населенности для лазерного излучения на переходе 2p-3s в ионах Ge⁺²² и разработки адекватной физической модели высокотемпературной неравновесной плазмы.

Таблица 1 – Параметры лазерного импульса

N⁰	Поток ЛИ на мишени,	Энергия ЛИ на ми-	Облучаемая площадь	Длительность на по-		
	BT/cm ²	шени, Дж	10 ⁻³ см ²	лувысоте, нс		
1	$2.2 \cdot 10^{13}$	284	33	0.4		
2	$1.8 \cdot 10^{13}$	308	43.5	0.4		

Рис. 1. Экспериментальные спектры РИ из Ge-мишени

В результате измерений получены спектры, которые приведены на рис. 1. Процедура обработки экспериментальных данных приведена в работе [2]. На рис.1 для сравнения приведен спектр РИ, полученный на спектрографе с кристаллом КАР в близком по условиям проведения эксперименте. При этом спектр был увеличен в 3 раза. Так же приведен расчетный спектр для условий проведения 1-го опыта. Одномерные расчеты проводились в плоской геометрии в рамках приближения неравновесной газодинамики с помощью программы СС9 [1].

По форме и положению линий РИ все спектры имеют удовлетворительное согласие. Наблюдается серия линий РИ в диапазоне 1.2-1.5 кэВ, соответствующая переходам 2p-3s, 2p-3d, 2s-3p [Ne]-подобных ионов Ge⁺²².

Измерения спектра из Dy- и Аи-мишеней

Исследовался спектральный состав, зависимость выхода РИ и коэффициента конверсии лазерного излучения в РИ для различных интенсивностей облучения мишени. Коэффициент конверсии определяется как отношение выхода РИ из мишени к энергии ЛИ, падающего на мишень.

На рис. 2 приведены экспериментальные и расчетные спектры РИ из Dy-мишени. Имеется удовлетворительное согласие по положению пика РИ в районе 1.6 кэВ. В расчете отсутствует группа линий в области ~ 1.3 кэВ. Наблюдается хорошее совпадение по форме результатов измерений МЗ и КАР в диапазоне 1.4-2.3 кэВ.

Рис. 2. Экспериментальные и расчетные спектры РИ из Dy-мишени при интенсивности ЛИ на мишени 4·10¹⁴ Bт/см².

На рис. 3 приведены экспериментальные и расчетные спектры РИ из Аи-мишени для одного из трех опытов. Имеется удовлетворительное согласие в форме спектров, полученных при помощи МЗ и КАР. Расчетный спектр имеет в несколько раз больший пик РИ, в нем полностью отсутствует массив линий переходов при энергии ~2.1 кэВ, обусловленный переходами между подоболочками 3d-4p.

Рис. 3. Экспериментальные и расчетный спектры РИ из Аи-мишени при интенсивности ЛИ на мишени 6.7·10¹⁴ Вт/см².

Получено удовлетворительное согласие экспериментальных и расчетных данных по коэффициенту конверсии и выходу РИ из Dy-мишени и Au-мишени, см. табл. 2.

Таблица 2	2
-----------	---

1 a0	Габлица 2								
N⁰	Поток ЛИ на	Энергия ЛИ на	Облучаемая	учаемая Выход РИ из мишени,		Коэффи	оэффициент кон-		
	мишени,	мишени, Дж	площадь,	Дж			версии, %		
	10^{14} Bt/cm^2		10 ⁻³ см ²	Зеркало	КАР	Расчет	Зеркало	КАР	Расчет
	Dy								
1	4	270	1.1	21	16	26	7.8	5.9	9.6
2	4.6	250	0.9	11.8	10.9	-	4.7	4.4	-
	Au								
1	50	260	1	2.6	-	9.8	1	-	3.7
2	1.3	260	33	7.2	-	8.2	2.8	-	3.15
3	6.7	260	8.3	7.6	6.5	12.2	2.9	2.5	4.7

Заключение

В настоящей работе представлены результаты спектральных измерений РИ из Ge-, Dy- и Auмишеней спектрографом на базе изогнутого M3. На лазерной установке ИСКРА-5 исследовалась зависимость выхода и спектра РИ в диапазоне 1.15-2.65 кэВ при различных уровнях облучения мишени лазерным излучением.

В опытах с Ge-мишенями расчетный и экспериментальные спектры по форме имеют удовлетворительное согласие. Наблюдается серия линий РИ в диапазоне 1.2-1.5 кэВ, соответствующая переходам 2p-3s, 2p-3d, 2s-3p ионов Ge⁺²².

В измерениях с Dу-мишенью получено удовлетворительное согласие по форме экспериментальных и расчетного спектров в диапазоне 1.4-2.3 кэВ. В расчете отсутствует группа линий в области ~ 1.3 кэВ.

В измерениях с Аu-мишенью имеется согласие по форме и положению пиков РИ для расчетных и экспериментальных спектров в области 2.4-2.7 кэВ. Небольшое отличие спектров наблюдается ниже 2.2 кэВ. В расчете отсутствуют пики РИ в районе 2.1 кэВ.

В экспериментах продемонстрирована техническая простота измерений на спектрографе с M3. Регистрация спектра за различными поглотителями позволила осуществить точную привязку энергетической шкалы и расширить динамический диапазон регистрации по интенсивности РИ.

Список литературы

1. Воинов Б.А., Гаспарян П.Д., Кочубей Ю.К., Рослов В.А. Программа СС9. ВАНТ, сер. Методики и программы численного решения задач математической физики, 1993, вып.2, 65с.

2. Ю.Л. Лобанова, А.Н Субботин, П.Д. Гаспарян, Е.С. Цой, Н.А. Суслов. Измерение спектра рентгеновского излучения лазерной плазмы плоских мишеней из Dy, Ge и Au с помощью изогнутого многослойного зеркала Препринт № 99, Саров: РФЯЦ-ВНИИЭФ, 2005.

Аномальный эффект Косселя в рентгеновской голографии

П.Г.Медведев, А.М.Афанасьев, М.А.Чуев

Физико-технологический институт РАН, Нахимовский пр-т, 36, к.1, Москва, Россия

e-mail: p.medvedev@mail.ru

R последнее время, в связи с исследованиями по рентгеновской голографии интерес к исследованиям резко возрос специфики выхода рентгеновского излучения из кристалла, так называемым линиям Косселя. Еще в 60-е годы была отмечена уникальная возможность использования линий Косселя для определения фаз амплитуд рассеяния и их использования в рентгеноструктурном анализе, что и легло в основу метода рентгеновской голографии, который основан на физических явлениях, присущих как методу Косселя, так и хорошо известному метолу стоячих рентгеновских волн. Одной из основных трудностей в развитии методов рентгеновской голографии для определения локальной атомной структуры являлась трансляционная симметрия большинства исследуемых образцов, что выражалось в необходимости учета ярко выраженных стандартных дифракционных линий Косселя. В экспериментальных данных эти, более высокочастотные, линии накладываются на голографические осцилляции, прием имеют большую амплитуду, чем последние, что затрудняет анализ и выделение голографических данных, получаемых от образца. Метод для голографической информации, выделения основанный на свертке полученных данных с распределением Гаусса, был предложен в 1991 году, он позволяет усреднять сравнительно более высокочастотные осцилляции от линий Косселя. свойства характеризующие дифракционные исследуемого образца в целом, при этом низкочастотные остаются осцилляции на экспериментальных кривых, отражающих локальную структуру распределения электронной плотности. Однако проведенный ранее и в этой работе детальный анализ механизмов формирования стоячих рентгеновских волн и линий Косселя был основан на стандартных схемах дифракции, и по существу, лишь обосновывает эффективность использования принципа взаимности.

До самого последнего времени в теории формирования линий Косселя полностью отсутствовал анализ одного из наиболее интересных случаев - случая предельно асимметричной схемы дифракции, когда в кристалле на некоторой глубине формируется сильно сжатый рентгеновский пучок, распространяющийся параллельно поверхности кристалла, а степень сжатия может достигать нескольких сотен раз [1]. Это предсказание нашло свое экспериментальное подтверждение

использовании метода стоячих при рентгеновских волн с регистрацией фотоэлектронов. Естественно ожидать, что сильное сжатие рентгеновского пучка в кристалле должно сказаться и на распределении интенсивности излучения внутри линии Косселя, что и явилось основной мотивацией для проведения данной работы.

Рассмотрены особенности геометрии дисперсионной поверхности в окрестности вырожденной точки в предельно асимметричной схеме дифракции. Показано, что существует некоторое направление падения рентгеновских лучей на кристалл в этой схеме, при котором все корни дисперсионного уравнения, в случае отсутствия поглощения, становятся вырожденными. При этом вектор Пойтинга направлен параллельно поверхности кристалла (рис.1).

Рис. 1. Дисперсионная поверхность в предельно асимметричной схеме дифракции: в геометрии Брэгга (а), в вырожденной точке (б) и в геометрии Лауэ (в).

На основании принципа взаимности были проведены соответствующие расчеты распределения интенсивности излучения внутри линии Косселя для различных отражений и плоскостей среза кристалла [2,3]. Обнаружено аномальное усиление интенсивности внутри направлениях, линий Косселя, В соответствующих окрестности вырожденной точки в предельно асимметричной схеме дифракции – аномальный эффект Косселя (рис. 2).

Рассмотрены две возможности возбуждения аномального эффекта Косселя: рентгеновским пучком, падающим под углом близким к углу зеркального отражения или электронным пучком небольшой энергии. Предложена схема возможного экспериментального наблюдения явления при помощи кристалла анализатора. Проанализированы параметры кристалла анализатора для наблюдения максимально возможного проявления эффекта.

Естественно ожидать, что подобный аномальный вид распределения внутри линий Косселя, как по интенсивности, так и по виду, в выходе вторичного рентгеновского излучения не усредняется используемым в рентгеновской голографии способом. А так как на кристаллических образцах можно найти много рефлексов, соответствующих предельно асимметричной схеме дифракции, то тем более возникает необходимость учета этого явления при анализе данных, получаемых в результате экспериментов по рентгеновской голографии на образцах имеющих трансляционную симметрию.

Установлена возможность усиления аномального эффекта Косселя за счет рассмотрения конечного кристалла, с толщиной, порядка глубины максимального сжатия пучка в предельно асимметричной дифракции. Также рассмотрена возможность использования более плотных оптически слоев на границах кристалла для значительного усиления эффекта [4].

[1] Afanasev, A.M., and Esayan, A.V., Phys. Stat. Sol, **126**, 303 (1991).

[2] Афанасьев, А.М., Ковальчук, М.В., Чуев, М.А., Медведев, П.Г., ЖЭТФ, **122**, 549 (2002).

[3] Чуев, М.А., Афанасьев, А.М., Ковальчук, М.В., Медведев, П.Г., Поверхность, 7, 76 (2002)
[4] Медведев, П.Г., Афанасьев, А.М., Чуев, М.А., Микроэлектроника, 4, (2006) (в печати).

Рис. 2. Распределение интенсивности рентгеновского излучения GeKα, излучения от кристалла Ge внутри линии Косселя для отражения (220).

Безразмерный анализ оптических характеристик трековых мембран в рентгеновской и ультрафиолетовой областях спектра А.В. Митрофанов

Физический институт имени П.Н.Лебедева РАН, Ленинский проспект 53, Москва, 119991, Россия

e-mail: mitrofa@sci.lebedev.ru

Трековые мембраны представляют собой полимерные пленки со сквозными микроотверстиями, полученными в результате облучения пленок пучком тяжелых ионов и последующей химической обработки облученного материала. Благодаря удачному сочетанию оптических и механических свойств, трековые мембраны и фильтры, изготовленные на их основе, могут успешно служить в качестве элементов рентгеновской оптики. Они могут использоваться как рентгеновские фильтры с высоким уровнем блокировки видимого и УФ излучения, быть коллиматорами, нейтральными ослабителями потоков, рассеивающими экранами. использоваться как тестовые объекты с высокими пространственными частотами и т.д.

В данном сообщении рассматриваются оптические характеристики полимерных трековых мембран. Изучаются мембраны со сквозными цилиндрическими порами, перпендикулярными поверхности (нормальный режим облучения пленок ионами на ускорителе). Оптические свойства фильтров на основе трековых мембран определяются только формой и размерами пор мембраны и оптическими характеристиками материала мембран и дополнительных покрытий[1,2]. У данного типа фильтров можно выделить две основные характеристики: это спектральный коэффициент пропускания и угловая зависимость пропускания излучения для разных длин волн. Коэффициенты пропускания трековых мембран при нормальном падении излучения и угловые характеристики пропускания как функции длины волны λ зависят от таких линейных параметров, как диаметр пор D, толщина мембраны L и среднее расстояние между соседними порами d. В следующем приближении требуется учитывать величину шероховатости стенок пор, отклонение формы пор от цилиндрической, конечную величину глубины поглощения излучения в полимере и т.д. В работе исследуется вопрос, как описать оптические характеристики трековых мембран с помощью основных безразмерных параметров, представляющих собой комбинации главных структурных параметров и длины волны, например безразмерного числа Френеля $F = D^2 / \lambda L$, определенного для одиночной цилиндрической поры в полимерной матрице. При построении

универсальной кривой пропускания привлекался большой массив уже опубликованных данных.

Для экспериментальных задач оптики и рентгеновской астрономии представляют интерес трековые мембраны со сквозными порами микронного и субмикронного размеров и плотностью пор N от $\cong 10^5$ до 10^9 см⁻². Можно предложить единый подход к оценке оптических характеристик трековых мембран, сделанных при условии соблюдения одинаковой геометрии облучения исходного материала ионами на vскорителе. Для этого надо воспользоваться масштабированием или ввести полный набор основных безразмерных параметров, характеризующих мембрану. В случае мембран с цилиндрическими параллельными порами такими главными параметрами могут быть величины $P_1 - P_4$, определяемые следующим образом: $P_1 = \lambda/D$, $P_2 = \lambda L/D^2$, $P_3 = D/d$ и $P_4 =$ λ/λ_{uv} . Здесь *d* – среднее расстояние между ближайшими соседними порами: $d = 0.5 N^{-1/2}$ λ_{uv} – УФ граница прозрачности полимера (или его покрытия). Параметры P_1 и P_2 характеризуют дифракционное качество входных и выходных отверстий пор и их каналов. Здесь *P*₂ – обратное число Френеля. Вклад парных и многократных наложений пор может учитываться с помощью параметра P_3 . Нетрудно видеть, что $P_3 = f(P_n) =$ $4^*(P_n/\pi)^{1/2}$, где P_n - номинальная пористость фильтра : $P_n = \pi D^2 N/4$. Отношение P_1/P_2 служит для описания угловых характеристик пропускания фильтров, когда пористость мембран не слишком велика и вклад многократных отражений излучения от стенок пор мал. Параметр $P_4 = \lambda / \lambda_{uv}$ указывает на длинноволновую границу спектрального диапазона, в котором трековые мембраны с порами малого диаметра эффективно фильтруют оптическое излучение даже без дополнительного покрытия полимерной матрицы металлом или каким-либо другим поглотителем, например углеродом.

 [1] Mitrofanov A.V., Apel P.Yu., Nucl. Instrum. and Meth. A, **282**, 542-545 (1989).
 [2] Митрофанов А.В., ПТЭ, № 5, 137-141 (1997).
Силы осцилляторов вибрационных и ридберговских переходов в 1s – спектре поглощения молекулы N₂.

<u>С. В. Некипелов¹</u>, А. С. Виноградов², Д. В. Вялых^{3,4}, С. Л. Молодцов^{2,3,4}, В. Н. Сивков¹, Д. В. Сивков¹

¹ Сыктывкарский государственный университет, г.Сыктывкар, 167001, Россия: snek@syktsu.ru ² Санкт-Петербургский государственный университет, г. Санкт-Петербург, 198504, Россия

³ Institut für Festkörperphysik, Technische Universität Dresden, D-01062 Dresden, Germany

⁴ Russian-German Laboratory at BESSY II, 12489, Berlin-Adleshof, Germany

Молекула азота является одной из самых простых молекул, состоящих из атомов II периода, и она является интересным объектом для различного рода теоретических и экспериментальных исследований, по этому в частности ближняя тонкая структура рентгеновских спектров поглощения молекулы азота активно исследуется и обсуждается в литературе. В 1s - рентгеновских спектрах поглощения этой молекулы проявляется резонансная структура в виде интенсивных полос поглощения, расположенных перед 1s порогом ионизации (*π*-резонанс формы) и в ближнем континууме (о-резонанс формы), на которые накладываются вибрационные переходы, то есть $1s \rightarrow 2p$ переход с одновременным возбуждением колебательного кванта (рис. 1). Следует отметить, что вибрационная тонкая структура π-резонанса часто используется в качестве оценки для демонстрации разрешающей силы рентгеновских спектрометровмонохроматоров. Кроме того, вблизи 1s-края поглощения имеется также ридберговская структура в виде ряда малоинтенсивных узких пиков.

Рис.1. Спектральная зависимость сечения поглощения молекулы азота, полученная с использование синхротронного излучения с энергетическим разрешением $\Delta E = 0.04$ эВ.

Силы осцилляторов этих рентгеновских переходов являются фундаментальной характеристикой взаимодействия рентгеновского излучения с молекулой, так как сила осциллятора равна с точностью до постоянной вероятности этого перехода и может быть рассчитана теоретически. Ранее нами были получены экспериментальные данные по интегральным силам осцилляторов **π**и о-резонансов формы для молекулы азота, определенных из спектральных зависимостей сечений поглощения в области 1s – края поглощения [1]. Эти данные были получены на лабораторном спектрометре РСМ-500 с корректным учета фона и аппаратурных искажений в пределе «нулевой» оптической плотности образца. Однако по причине недостаточно высокого аппаратурного разрешения лабораторного спектрометра, в полученных спектрах не проявляется колебательная структура. В настоящей работе представлены исследования, выполненные с высоким энергетическим разрешением с использованием синхротронного излучения Российско-Германского канала электронного накопителя BESSY-II. Эти спектры, полученные при очень низких давлениях азота в газовой кювете, то есть практически при «нулевой» оптической плотности, содержат контрастную структуру *п*-резонанса из 8 вибрационных пиков (рис.2) и 14 ридберговских пиков (рис.3). Эти спектры поглощения измерены в относительных единицах, но с проведением нормировки на падающее излучение. В докладе представлены методики и результаты приведения спектров, полученных с использованием синхротронного излучения, к абсолютной шкале сечений поглощения, и определение из них сил осцилляторов вибрационных и ридберговских переходов. В основе методики лежит условие, что сила осцилляторов узких селективных пиков, полученных при «нулевой» оптической плотности, не зависит от энергетического разрешения [1]. Для приведения 1s-спектра поглощения азота, полученного на синхротроне с высоким разрешением $\Delta E = 0.04$ эВ, но в относительных единицах, к абсолютной шкале использован спектр, полученный на спектрометре РСМ-500 с низким энергетическим разрешением $\Delta E = 0.7$ эВ в абсолютных единицах (Mb) [1]. При этом общая площадь π-резонанса со всеми вибрационными пиками (рис.2) была нормирована на определенную экспериментально силу осциллятора этой полосы, равной 0.29 [1]. Далее каждый вибрационный пик на рис.2 был аппроксимирован дисперсионной функцией определенной ширины и амплитуды в максимуме (штрихованные линии на рис.2), которые в сумме совпадают с исходной полосой. После интегрирования были получены величины сил осцилляторов вибрационных переходов (вставка на рис. 2)

Рис. 2. Спектральная зависимость дифференциальной силы осциллятора d f/dE в области π_{g} - резонанса формы N₂. Штриховыми линиями показаны вибрационные пики, интерполированные дисперсионными функциями.

Рис.3. Сечение поглощение и силы осцилляторов ридберговских переходов. Штриховыми линиями показаны вибрационные пики, интерполированные дисперсионными функциями.

На следующем этапе было проведено, моделирование влияния дисперсионной аппаратной функции на спектральное распределение сечения поглощения в области 1s - края азота для случая нулевого давления. При этом в качестве истинного сечения поглощения о (Е) было взята исследованная зависимость. с высоким разрешением (рис.2), приведенная к абсолютной шкале сечений поглощения. При ширине аппаратной функции 1.1 эВ наблюдается хорошее согласие с экспериментальным полученным при энергетическом спектром, разрешении ∆Е=0.7эВ.

Полученная при помощи описанной выше методики абсолютная шкала сечений поглощения для спектров, снятых с использованием синхротронного излучения, позволила нам также определить силы осцилляторов ридберговских переходов (рис. 3). В качестве профиля линий бралась дисперсионная функция, а 1s-край поглощения аппроксимировался арктангенсоидой.

Исследования проведены при финансовой поддержке РФФИ грант № 04-02-17216

[1] В.Н. Сивков, А.С.Виноградов. Оптика и спектроскопия, 2002. Т.93. №3. С.431-434

Новая мощная трубка на длину волны 13,5 нм

И.Г. Забродин¹,И.А. Каськов¹, Е.Б. Клюенков¹, <u>А.Е. Пестов¹</u>, Д.Г. Раскин¹,

Н.Н. Салащенко¹, Н.И. Чхало¹, В.А. Кузнецов², В.М. Артюхов²

¹Институт физики микроструктур РАН, ГСП-105, Нижний Новгород, Россия

²НПО "Салют", Нижний Новгород, Россия

e-mail: chkhalo@ipm.sci-nnov.ru

В настоящее время в мире идёт работа по разработке технологии проекционной EUV литографии на длину волны 13,5 нм. В рамках российской программы в Институте физики микроструктур РАН ведётся работа по созданию микролитографа [1], который должен решить ряд технологических задач стоящих на пути создания промышленной установки. В числе которых: отработка основных оптических узлов для промышленной литографической установки; исследование и разработка фоторезистов на 13,5 нм с пространственным разрешением <20 нм; проведение литографических работ в рамках создания тестовых наноструктур.

В качестве источника излучения для данного прибора была выбрана разборная Преимуществами рентгеновская трубка. рентгеновской трубки перед источниками других типов (газоразрядные и лазерно-плазменные), являются: длительный срок службы без деградации характеристик источника (>3000 малые габаритные часов): размеры. позволяющие легко встраивать трубку в приборы; относительно различные низкая стоимость; малые загрязнения оптики. К недостаткам рентгеновской трубки можно отнести малый, по сравнению с плазменными источниками, коэффициент конверсии энергии электронного пучка в энергию излучения (~10⁻⁶). Тем не менее, данная трубка отвечает расчетной производительности микролитографа, которая должна составлять не менее $0.01 \text{ см}^2/\text{с}$.

Описание рентгеновской трубки

Основным отличием данной трубки от большинства используемых, в том числе и в ИФМ РАН [2], является использование трех электродной системы, преимуществами которой является: возможность управления размером пучка в широких пределах; отсутствие ионной бомбардировки термокатода, что позволило использовать материал с меньшей работой выхода – LaB₆. В качестве мишени используется кремниевая пластина толщиной 0.3 ММ припаянная к водоохлождаемому медному держателю. Угол падения электронного пучка на мишень, отсчитанный от плоскости, составляет 30°. Электронно-оптическая схема трубки представлена на рис.1.

В настоящее время изготовлен опытный экземпляр рентгеновской трубки, и он проходит паспортизацию его энергетических и эксплуатационных характеристик. Внешний вид прибора представлена на Рис.2.

Рис.2 Внешний вид и габариты рентгеновской трубки.

Эксперимент

Тестирование основных характеристик трубки (накальная характеристика термокатода, характеристика, вольт-амперная размер электронного пятна на мишени, угловые, энергетические зависимости интенсивности флуоресценции и др.) производилось на стенде [3]. Схемы экспериментов по определению угловых зависимостей интенсивности флуоресценции и размера электронного пятна на мишени представлены на Рис. 3 и 4. В качестве использовался летектора абсолютно калиброванный измеритель мощности [4].

Рис. 3 Эксперимент по изучению угловой зависимости интенсивности флуоресценции.

Рис. 4 Эксперимент по изучения размера электронного пятна на мишени (метод камеры обскуры).

Зависимость тока эмиссии от тока нагревателя термокатода при различных значениях ускоряющего напряжения приведены на Рис.5. Значение потенциала на управляющем электроде относительно термокатода равнялось нулю.

Рис. 5 Зависимость тока эмиссии от тока нагревателя термокатода.

Зависимости размера электронного пучка на поверхности мишени в зависимости от тока эмиссии рентгеновской трубки представлены на Рис. 6, Рис. 7 демонстрирует влияние потенциала на управляющем электроде на размер электронного пучка.

Рис. 6 Зависимость размера электронного пучка от значения тока эмиссии.

Рис. 7 Зависимость размера электронного пучка от значения запирающего потенциала.

Проведенные эксперименты показали, что данная рентгеновская трубка может быть использована в качестве источника для микролитографа, а также и для других задач в MP и EUV диапазоне (рефлектометрия, флуоресцентный анализ и др.)

Работа поддержана грантом РФФИ 05-02-17340.

[1] М.С. Бибишкин, Н.Б. Вознесенский, Е.Б. Клюенков и др. Сборник "Нанофизика и наноэлектроника", т.2, 479-480 (2005).

[2] Бибишкин М.С., Забродин И.Г., Клюенков Е.Б. и др., Поверхность, №2, 41-45 (2003).

[3] Бибишкин М.С., Забродин И.Г., Каськов И.А. и др., Известия РАН. Сер. физ., 68, №4, 560-564 (2004).

[4] М.С. Бибишкин, Б.А. Закалов, С.Ю. Зуев и др. Сборник "Нанофизика и наноэлектроника", т.2, 302-303 (2005).

Исследование структуры нанокомпозитов металл-диэлектрик.

Ю.Е.Калинин², Л.Н.Котов¹, <u>А.П.Петраков</u>¹, А.А.Садовников¹, А.В.Ситников², В.К.Турков¹

¹Сыктывкарский государственный университет, Октябрьский пр., 55, Сыктывкар, Россия ²⁾ Воронежский государственный технический университет, Воронеж, Россия e-mail: <u>petrakov@syktsu.ru</u>

Гранулированные композиты металлдиэлектрик, представляющие собой наноразмерные (2 – 10 нм) металлические частицы, распределённые в диэлектрической матрице, повышенный вызывают интерес благодаря наличию комплекса таких необычных свойств, как слабая локализация. перколяционные принципы транспортных свойств. спин-зависимое туннелирование носителей заряда и т. п. Многофазные нанокомпозиты аморфных на основе ферромагнитных сплавов, полученные методами напыления, являются наименее изученными материалами, многие свойства которых вблизи перехода «металл-диэлектрик» ещё не совсем понятны.

В данной работе исследовались аморфные гранулированные пленки $(Fe_{40}Co_{40}Zr_{20})_x(Al_2O_3)_{100-x}$, где x – содержание металла в образце. Нанокластеры сплава $Fe_{40}Co_{40}Zr_{20}$, хаотично распределены в изолирующей аморфной матрице Al₂O₃, были получены методом ионно-лучевого напыления в атмосфере аргона. Для напыления использовались составные мишени ферромагнетика и диэлектрика, напыление производилось на неохлаждаемые подложки из ситалла. Полученные напылением образцы представляли собой плёнки толщиной в несколько мкм с изменяющейся величиной х в интервале от 32, до 63 ат %.

Образцы исследовались рентгеновскими методами (дифрактометрия и рефлектометрия), а также методами ЭПР. Характерный вид дифрактограмм рентгеновских снятых на железном излучении приведен на рис.1. Из рисунка видно, что после термического отжига резко увеличивается интенсивность пика с угловым положением 57.6 град. Этот пик формируется пленкой, поскольку на дифрактограмме подложки он отсутствует. По полуширине данного пика был определен размер кристаллитов сплава согласно формулы Селякова

$$L = \frac{\lambda}{\Delta \mathcal{G} d \cos \mathcal{G}_B}$$

где λ - длина волны, $\Delta \vartheta$ - полуширина дифракционной линии, d – межплоскостное расстояние, ϑ_B – угол Брэгга. Их размер с увеличением металлической фазы растет от 2 нм при содержании металлической фазы 32 % до 8 нм при 63 %. После термического отжига размер кристаллитов также возрос до 5 нм для 32 %; 40 % и 52 %. Отжиг образцов с содержанием металлической фазы 63 % не повлиял на размер кристаллитов.

Рис.1. Рентгеновская дифрактограмма образца с содержанием металлической фазы 52 %. Кривая 1 – до отжига, 2 – после отжига.

На рис.2 приведена рефлектограмма. Теоретическая кривая подгонялись к экспериментальным изменением только одного параметра – среднеквадратичной высоты шероховатости. Величина данного параметра совпала с размерами кристаллитов определенных дифрактометрически.

Рис.2. Рентгеновская рефлектограмма образца с содержанием металлической фазы 40% до отжига. Кривая 1 – экспериментальная, 2 – теоретическая.

Спектры ΦMP получались на ЭПР спектрометре на частоте 9366 МГц. Измерялись величины резонансных полей H_{pes} и ширина линии однородной процессии ΔH для тангенциальной ориентации пленки относительно направления постоянного различной магнитного поля для пленок с концентрацией металлической фазы.

На рис.3 представлены линии однородной процессии (ФМР) для трех различных значений процентного содержания металлической фазы. Видно, что такие характеристики, как ширина резонансной кривой ΔH и величина резонансного поля H_{pes} являются чувствительными к структурным изменениям материала.

Рис.3. Резонансные кривые ФМР (производная сигнала) при трех различных значениях концентраций металлической фазы (1 – 32 %; 2 – 40 %; 3 – 63 %).

На рис.4 представлена зависимость $H_0 - H_{pes}$ от процентного содержания металлической фазы $Fe_{40}Co_{40}Zr_{20}$. Здесь $H_0 = \omega/\gamma = 3340\Gamma c$ ($\omega = 2\pi f - циклическая$ частота, γ - гиромагнитное отношение).

Рис.4. Положение резонансной кривой ФМР в зависимости от концентрации металлической фазы.

Исходя из зависимостей $H_0 - H_{pes} x\%$ (рис.4) можно выделить три области концентраций металлической фазы. В области 31÷33% наблюдается аномальное поведение образца. Так величина ΔH начинает расти при увеличении x, а величина $H_0 - H_{pes}$ резко растет с 570 Э до 800 Э.

В области концентраций $33 \div 45\% \Delta H$ линейно уменьшается с 1200 Э до 400 Э, а смещение резонансной кривой $H_0 - H_{pe_3}$ линейно увеличивается с 800 Э до 1800 Э. Данные

концентраций находятся значения доперколяционной области. Область 45÷50% соответствует порогу перколяции образцов и в дальнейшем экспериментальные кривые слабо меняются с ростом х. В частности ширина резонансной кривой ДН плавно уменьшается приближаясь к значению порядка 200 Э. Следует отметить что в образцах с большим содержанием металлической фазы (x>50%) наблюдается некоторый разброс значений ДН (100÷150 Э) и смещения H₀ -H_{pe3} (50÷100 Э) при довольно близких значениях х. Данный факт можно объяснить тем, что при больших концентрациях образцах фазы могут магнитной в образовываться области С различными размерами кластеров, приводящие к различным размагничивающим полям.

Были проведены исследования спектров отличающихся ряда образцов ΦMP для фазы, металлической концентрацией различных подвергнутых отжигу при температурах. Наблюдаемое изменение спектров ΦMP носило принципиально различный характер для образцов с концентрацией х больше 45% (выше порога перкаляции) и меньше 45% (ниже порога перкаляции). В первом случае форма резонансной линии не менялась, оставаясь близкой к лоренцовской. Было отмечено только небольшое изменение ширины и положения резонансной кривой обусловленное вероятно увеличением намагниченности металлических гранул при отжиге. Во втором случае (рис.5) наблюдалось резкое изменение формы резонансной линии, причем температура отжига, при которой начиналось это изменение, уменьшалась при приближении концентраций к порогу перкаляции (45%).

Рис.5. Зависимость формы резонансной кривой ФМР образца с концентрацией ниже границы перкаляции ($X \approx 35\%$) от температуры (сплошная линия –для исхдного образца, пунктирная –после отжига при 350⁰ С в течении 1.5 часа).

В заключении можно сказать, что данные экспериментальные исследования подтверждают существующие представления о формировании наноструктурного ферромагнетика и обнаруженные изменения спектров ФМР в зависимости от концентрации магнитной фазы и при отжиге связаны с трансформациями магнитных микроструктуры И топологии нанокомпозитов.

Влияние антидиффузионных слоев В₄С и Cr на отражательные характеристики многослойных рентгеновских зеркал на основе Mo/Si

С. Ю. Зуев, А. Е. Пестов, В. Н. Полковников, Н. Н. Салащенко

Институт физики микроструктур РАН, ГСП-105, ул. Ульянова 46, Нижний Новгород, Россия e-mail: polkovnikov@ipm.sci-nnov.ru

Для развития работ в области создания установок проекционной EUV-литографии $(\lambda = 13.5)$ представляется важным нм) изготовление высокоотражающих многослойных рентгеновских зеркал нормального падения на основе Mo/Si. Современные технологии обеспечить позволяют величину пикового коэффициента отражения для Мо/Si-структур порядка R=68-69% [1] (при теоретическом пределе около 75%).

Дальнейшему увеличению R препятствует образование на межслоевых границах соединений MoSi_x, приводящих к увеличению толщины переходного слоя и снижающих градиент диэлектрической проницаемости на границе раздела (а значит, способствующих снижению R). При этом замечено, что толщины переходных слоев различны для случаев границ Mo на Si и Si на Mo. В первом случае это 1-1,2 нм, во втором – порядка 0,5-0,6 нм [2].

Исходя ИЗ этих наблюдений была предложена технология нанесения антидиффузионных (барьерных) слоев между материалами основной структуры. Причем толшина барьера должна быть меньше толшины переходных слоев. Кроме того, материал барьера не должен образовывать химических соединений с элементами рентгеновского зеркала. Эта позволяет методика снизить толщину границах раздела переходного слоя на структуры. В качестве такого материала хорошо подходит карбид бора В₄С или углерод С (и, возможно, хром Cr). Нанесение антидиффузионных слоев из вышеуказанных материалов позволяет поднять пиковый коэффициент отражения Мо/Si-зеркал до 70 %.

В данной работе представлены результаты подобных исследований, проводившихся в ИФМ РАН.

Структуры наносились методом магнетронного распыления на полированные кремниевые пластины с шероховатостью не хуже 0,3 нм.

определения C целью периода многослойных структур, соотношения толщины слоев материалов в периоде и оценки высоты межплоскостных неровностей границ раздела слоев проводились измерения малоугловой рентгеновской дифракции от изготовленных структур на рентгеновских дифрактометрах ДРОН-3М и PRO. Измерения в мягком рентгеновском диапазоне проводились с использованием стенда, созданного на основе

спектрометра-монохроматора PCM-500, а также на разработанном и изготовленном в ИФМ РАН светосильном рефлектометре [3], на линии Si La (13,5 нм).

В качестве материалов антидиффузионных слоев применялись карбид бора В₄С и хром Сг. В ходе экспериментов изучалось влияние барьеров на отражательные характеристики зеркал как при нанесении только на границы раздела Мо на Si (или Si на Mo), так и на обе границы одновременно. Толщины антидиффузионных слоев варьировались от 0,2 нм до 0,75 нм.

В приведенной ниже таблице представлены результаты для случая осаждения барьерных слоев В₄С на границу раздела Мо на Si, т. е.

период	Мо, d=2,8 нм
	В ₄ С, d=0,2-0,75 нм
	Si, d=3,95-3,4 нм

Таблица. Зависимость R от толщины барьера B_4C .

d _{в4C} , нм	0	0,3	0,45	0,6	0,75
R, %	67	68,5	66	65,5	64

В данном случае оптимальной толщиной барьерного слоя является 0,3 нм. Большее содержание карбида бора в структуре приводит к снижению коэффициента отражения.

В свете проблемы компенсации упругих деформаций [4] также представляет интерес величина внутренних напряжений изучаемых структур.

Подробнее результаты исследований будут представлены на соответствующем стенде.

[1] Braun St., Dietsch R., Haidl M., Microelectronic Engineering, 57-58, 9, (2001).

[2] Braun St., Foltyn Th., Mai H., Vakuum in Forschung und Praxis, 15, 76 (2003).

[3] Бибишкин М. С., Забродин И. Г., Каськов И.
А. и др., Известия РАН. Сер. физ., 68, 560 (2004).
[4] Андреев С. С., Клюенков Е. Б., Мизинов А.
Л., Поверхность, № 2 (2005), 45-48.

Теория дифракции рентгеновского излучения от многослойного зеркала с синусоидальным поверхностным рельефом

<u>В.И. Пунегов</u>^{1,2}, А.В. Карпов², С.И. Колосов² ¹Коми научный центр УрО РАН, ул. Коммунистическая 24, Сыктывкар, Россия

¹Коми научный центр УрО РАН, ул. Коммунистическая 24, Сыктывкар, Россия ²Сыктывкарский государственный университет, Октябрьский проспект 55, Сыктывкар, Россия e-mail: <u>punegov@syktsu.ru</u>

Современные достижения микро- и нанотехнологий позволяют изготовлять многослойные структуры, широко используемые в рентгеновской оптике. Сравнительно новыми элементами в данной области являются многослойные дифракционные решетки (МДР). Эти оптические элементы имеют высокую эффективность вне области полного внешнего отражения благодаря многослойному покрытию в комбинации с дисперсионными свойствами рельефной структуры поверхностной решетки. МДР применяются в различных спектроскопических исследованиях в качестве высокоразрешающих узкополосных монохроматоров и энергетических сепараторов. Рельеф МДР формируется периодическим расположением в горизонтальном направлении латерально ограниченных многослойных зеркал (штрихов решетки). Как правило, штрихи имеют прямоугольное или трапецеидальное сечение. Однако современные технологии (см., например, [1]) позволяют изготовлять наноструктурированные поверхности произвольной формы, включая волнистую поверхность.

В работе теоретически исследуется отражательная способность и угловое распределение интенсивности рассеяния от МДР синусоидальным поверхностным рельефом (рис.1).

Следует отметить, что модель поверхностной решетки с синусоидальным рельефом рассматривалась при изучении дифракции света от металлической решетки [2] и рентгеновских лучей от полимерной решетки [3]. Для кристаллического пространства такая модель теоретически не рассматривалась.

В рамках динамической теории дифракции

амплитудный коэффициент отражения от многослойного зеркала толщиной *L* имеет вид

$$E_{s}^{h}(q_{z},z) = \langle a_{h} \rangle f_{s} \cdot \frac{e^{i(q_{z}+\xi_{2})z} \left(e^{i\xi L}-e^{i\xi z}\right)}{\xi_{1}e^{i\xi L}-\xi_{2}} F(q_{x})$$

rge $\xi = \xi_{1} - \xi_{2}, \quad \xi_{1} = (\xi - q_{z})/2,$
 $\xi_{2} = -(\xi + q_{z})/2, \quad \xi = \sqrt{q_{z}^{2} - 4\langle a_{H} \rangle^{2}}.$

Угловые параметры $q_z = \frac{2\pi}{\lambda} \cos \theta_B \cdot \varepsilon + 2a_0$, и

 $q_x = \frac{2\pi}{\lambda} \sin \theta_B (2\omega - \varepsilon)$ связаны с поворотом образца ω и анализатора ε , соответственно.

Здесь $a_h = [\chi_1 - \chi_2] C \sin(h d_1 / 2) / (\lambda \sin \vartheta)$, где $\chi_{1,2}$ - рентгеновские восприимчивости сре-

ды первого и второго слоя периода зеркала $d = d_1 + d_2$, C –поляризационный фактор, $h = 2\pi / d$, λ - длина волны рентгеновских лучей, \mathcal{G} - угол скольжения падающего рентгеновского пучка. Коэффициент $a_0 = \pi \frac{\chi_1 \langle d_1 \rangle + \chi_2 \langle d_2 \rangle}{\lambda \cdot sin(\mathcal{G}) \langle d \rangle}$ определяет преломле-

ние и поглощение рентгеновских лучей в многослойной структуре. Величина $F(q_x)$ зависит от ширины засветки поверхности многослойной решетки падающим рентгеновским пучком.

Рассмотрим модель синусоидального рельефа $\zeta(x) = (l/2)(1 - \sin(\kappa x + \alpha))$, где $\kappa = 2\pi / \Lambda$, Λ -период, l – высота рельефа, α – фазовая постоянная. Амплитуда отражения рентгеновских лучей от волнистой структуры имеет вид

$$E_G^h(q_x,q_z) = L_G(q_x)E_1^h(q_x,q_z)$$

где $L_G(q_x) = \sum_{n=1}^N \exp(iq_x\Lambda n)$ - интерференцион-

ная функция поверхностной решетки, N- число ее периодов (штрихов).

Амплитуда волны, отраженной от единичного периода решетки запишется как

$$E_{1}^{h}(q_{x},q_{z}) = ia_{h} \int_{-A/2}^{A/2} dx \int_{0}^{\zeta(x)} dz \exp(i(q_{x}x+q_{z}z))$$

После преобразований, получаем следующее аналитическое решение:

$$E_{1}^{h}(q_{x},q_{z}) = \begin{cases} \frac{ia_{h}\pi l}{\kappa} \operatorname{sind}(\nu) \left(1 + \nu \frac{i\cos(\alpha) + \nu\sin(\alpha)}{\nu^{2} - 1}\right), & q_{z} = 0\\ i(a_{h}\Lambda/(q_{z})) \left[e^{i\frac{q_{z}l}{2}} \cdot \Omega(\nu,q_{z},\alpha) - \operatorname{sind}(\nu)\right], & q_{z} \neq 0 \end{cases}$$

Fige sinc(x) =
$$\frac{\sin(\pi x)}{\pi x}$$
, $v = q_x / \kappa$,
 $\Omega(v, q_z, \alpha) = \frac{1}{2\pi} \int_{-\pi}^{\pi} d\varphi \exp(i(v\varphi - q_z l \cdot \sin(\varphi + \alpha)/2))$,

Общее решение для двухслойной системы «рельеф - многослойная подложка» запишется как

 $E_h(q_x,q_z) = E_G^h(q_x,q_z) + exp(iq_z l)E_s^h(q_x,q_z)$ Интенсивность рассеяния рентгеновских лучей вычисляется по формуле $I_h(q_x,q_z) = |E_h(q_x,q_z)|^2$.

Нами проведено численное моделирование углового распределения отраженной интенсивности от многослойной структуры Ni/C применительно к трехосевой рентгеновской дифрактометрии. В вычислениях использовались следующие параметры: период зеркала d=4 nm; толщина никелевого слоя - 1.6 nm; полное число периодов, включая волнистую поверхность N=80; высота синусоидального рельефа -160 nm, период МДР T=800 nm; длина волны рентгеновского излучения 0.154 nm.

На рисунке 2 показана карта распределения интенсивности рассеяния от многослойного зеркала Ni/C с синусоидальным поверхностным рельефом вблизи угла скольжения 1.1 градуса, что соответствует первому дифракционному отражению от многослойной структуры.

Рис.2

Благодаря наличию синусоидального рельефа формируется система равноотстоящих полос (дифракционных порядков решетки) вдоль q_x направления. Расстояние между дифракционными линиями (сателлитами) находится из условия $q_x^{(n)} = (2\pi/T)n$, где n – номер дифракционного порядка. На рисунке 3 показаны кривые дифракционного отражения (q_z -сканы) от зеркала с рельефной поверхностью (1), от рельефа без подложки (2) и плоского рентгеновского зеркала (3). Провал в центре дифракционной кривой вызван интерференцией отраженных волн от рельефа и подложки.

На рисунке 4 представлены q_x -сканы для $q_z = 0$ и $q_z = 4 \ \mu m^{-1}$. В пером случае визуально наблюдаются только два дифракционных порядка. Это находится в соответствии с аналитическим решением и структурой распределения интенсивности на соответствующей карте (рис.2).

Рис.4

Расчеты показывают, что смещение линии q_x -сканирования всего на один шаг, равный $q_z = 4 \ \mu m^{-1}$, вызывает появление дальних дифракционных порядков.

[1] Xia Y. et al., Chem. Rev., 99, 1823(1999)

[2] Marx E., Germer T.A., Vorburger T.V., Park

B.C., Appl. Opt., 39, 4473 (2000)

[3] Geue T., Henneberg O., Pietsch U., Cryst. Res. Technol., **37**, 770 (2002)

Теория рассеяния рентгеновских лучей на многослойной дифракционной решетке со случайным расположением штриха в периоде

<u>В.И. Пунегов^{1,2}</u>, А.В. Карпов², С.И. Колосов²

¹Коми Научный Центр УрО РАН, ул. Коммунистическая д.24, Сыктывкар, Россия ²Сыктывкарский государственный университет, Октябрьский проспект 55, Сыктывкар, Россия e-mail: <u>punegov@syktsu.ru</u>

Теории рассеяния рентгеновских лучей на многослойных дифракционных решетках (МДР) с разными структурными нарушениями представлены в работах [1-3]. Тем не менее, несмотря на достаточно сильные нарушения, приводящие, в частности, к диффузному рассеянию, на картах распределения интенсивности наблюдаются явно выраженные сателлитные пики (дифракционные максимумы соответствующих порядков). В недавней работе [4] представлены экспериментальные измерения интенсивности рассеяния рентгеновских лучей от дифракционной решетки, в которой стохастически изменялось положение штриха в периоде. Показано, что случайное изменение положения штриха приводит к сжатию нулевого порядка дифракции и подавлению остальных дифракционных порядков.

Целью настоящей работы является разработка теории рассеяния рентгеновских лучей на многослойной дифракционной решетке со случайным расположением штриха в периоде. На рисунке 1 показаны идеальная (а) и стохастическая (b) многослойные дифракционные решетки.

Пусть расстояние в латеральном направлении от первого штриха до штриха с номером n равно n-1

 $\sum_{s=1}^{n-1} T_s$, где T_s - расстояние между штрихом с

номером s и штрихом с номером s+1. Выделим средний период многослойной дифракционной

решетки $\langle T \rangle$, при этом $T_s = \langle T \rangle + \Delta T_s$. Здесь ΔT_s случайные отклонения от среднего значения $\langle T \rangle$. При условии, что все штрихи решетки одинаковы, решение для интенсивности рассеяния от МДР может быть записано

$$I(q_x, q_z) = |A|^2 \left\{ N + 2 \operatorname{Re}\left(\sum_{n=1}^{N} \sum_{m=1}^{n-1} e^{-iq_x \langle T \rangle (n-m)} e^{-\frac{q_x^2 \sigma_T^2}{2} (n-m)}\right) \right\}$$

Здесь $\sigma_T = \sqrt{\langle \Delta T^2 \rangle}$ - дисперсия флуктуации латерального периода МДР, q_x , q_z - компоненты вектора q, определяющего отклонение вектора рассеяния от положения дифракции. Амплитуда отражения рентгеновских лучей от одного штриха $A = A(q_x, q_z)$ зависит от формы и размеров латерально ограниченного зеркала. В наиболее простом случае прямоугольного штриха шириной b_x и высотой l_z получаем

$$|A(q_x,q_z)|^2 = |a_h|^2 |sinc(q_x b_x / 2)|^2 |sinc(q_z l_x / 2)|^2,$$

где a_h - рассеивающая способность зеркала, sinc(x) = sin(x) / x. Для случая трапецеидальной формы штриха решение для амплитуды отражения получено в [5].

Численное моделирование рентгеновского рассеяния проведем для многослойной дифракционной решетки Ni/C с периодом зеркала d=4 nm, при этом отношение никелевого слоя к периоду d_{Ni} / $d=\gamma=0.4$. Толщина рентгеновского зеркала L=160 nm, что составляет 40 бислоев Ni/C. Высота периодического рельефа $l_z=140$ nm, ширина штриха $b_x=320$ nm. Период многослойной дифракционной решетки T=0.8 μ m, количество штрихов N=100. В расчетах используются параметры для рентгеновского излучения с длиной волны 0.154 nm.

Рисунок 2 демонстрирует карты углового распределения интенсивности рассеяния от идеальной (а) и стохастической (b) МДР. Причем в последнем случае дисперсия σ_T составляла половину латерального периода решетки. Нетрудно видеть, что случайное расположение штриха в периоде МДР приводит к формированию лишь одной линии нулевого дифракционного порядка. Остальные дифракционные порядки подавлены. Кроме того, наблюдается незначительное сужение линии основного максимума. Указанные эффекты наблюдались в экспериментальных измерениях рентгеновского рассеяния на стохастической МДР[4].

На рисунках 3 приведены дифракционные кривые q_x - сканирования от МДР с различной степенью флуктуации штриха в периоде.

Рис.3

Кривые 1 и 4 соответствуют картам распределения интенсивности рассеяния на рисунке 2. Из рис.3 следует, что при $\sigma_T = 0.1 T$ (кривая 2) подавлены дальние дифракционные порядки. Однако уже при $\sigma_T = 0.2 T$ (кривая 3) фактически исчезает вся сателлитная структура дифракционного профиля.

Кривые дифракционного отражения (q_z - сканы при $q_x = 0$) от рентгеновского зеркала со структурированной поверхностью (1), МДР без подложки (2) и плоской многослойной структуры (3) показаны на рисунке 4.

Вычисления рентгеновской дифракции от плоского многослойного зеркала (кривая 3 на рис.4) проводились в рамках динамической теории рассеяния. Результаты расчетов отражения от отдельного штриха решетки (кривая 2) по формулам динамической и кинематической теории совпадали. Провал на дифракционном пике (кривая 1 на рис.4) обусловлен интерференцией рентгеновских волн, отраженных от планарного рентгеновского зеркала и расположенного сверху периодического рельефа. Следует отметить, что профиль кривых q_z -сканирования не изменяется от случайного положения штриха решетки в периоде.

[1] Пунегов В.И., Нестерец Я.И., Мытниченко С.В., Коваленко Н.В., Чернов В.А., Поверхность. Рентгеновские, синхротронные и нейтронные исследования, № 1, 58 (2003)

[2] Пунегов В.И., Карпов А.В., Мытниченко С.В., Коваленко Н.В., Чернов В.А., Известия Академии наук. Серия физическая, **68**,.538 (2004)

[3] Пунегов В.И., Письма в ЖТФ, **30** (1), 3 (2004)

[4] Аристов В.В., Рощупкин Д.В., Шулаков Е.В., Нанофизика и наноэлектроника. ИФМ РАН, Н. Новгород, Т.1, 65 (2005)

[5] Пунегов В.И., Карпов А.В., Колосов С.И. Нанофизика и наноэлектроника. ИФМ РАН, Н. Новгород, T.2, 275 (2005)

Флуктуации амплитудных и фазовых характеристик многослойных структур

М.М. Барышева, <u>А.М. Сатанин</u> Институт физики микроструктур РАН, Нижний Новгород, Россия, ГСП-105 e-mail: <u>arkady@ipm.sci-nnov.ru</u>

Проблема последовательного описания распространения рентгеновского излучения в многослойных периодических структурах (МС) рентгеновских зеркалах – дискутируется сравнительно давно [1]. Особую трудность здесь вызывает последовательный учет различных факторов, нарушающих периодичность МС: шероховатостей, флуктуаций периода, состава и т.д. Несмотря на то, что взаимодействие излучения с веществом в рентгеновском диапазоне длин волн с МС мало, эффекты многократного рассеяния являются определяющими при формировании брэгговского резонанса, амплитудных и фазовых характеристик зеркал. Впервые попытка вычислить функцию распределения коэффициентов отражения ансамбля зеркал с учетом флуктуаций толщин слоев была предпринята в работе [2]. Полученная в [2] функция распределения оказалась достаточно широкой, что свидетельствует, в общем случае, о несамоусредняемости коэффициента отражения. Данное свойство указывает также на то, что отражательные свойства МС не характеризуются только средними значениями, а для их описания небходимо знать функцию распределения (на практике - хотя бы несколько распределения). моментов функции К недостаткам работы [2] следует отнести то, что авторы не учитывали поглощение волн в слоях и ограничились рассмотрением МС с небольшим числом периодов. Ранее мы попытались восполнить указанный недостаток [3], однако ряд вопросов в [3] не был разобран полностью.

В данной работе мы проведем детальные исследования влияние флуктуаций толщин слоев на отражательные и пропускательные характеристики МС. Мы исследуем флуктуации распределения амплитудных и фазовых характеристик МС, необходимые для предсказания параметров приборов, работающих как на отражение (зеркала, дисперсионных элементы), так и на пропускание (поляризаторы, фазовращатели).

Волновое поле внутри среды подчиняется уравнению Гельмгольца (будем рассматривать только случай *s* -поляризованной волны):

$$\frac{d^2 E}{dx^2} + k_0^2 (\varepsilon(x) - \sin^2 \theta) E = 0, \qquad (1)$$

где угол падения θ отсчитывается от нормали, $k_0 = \omega/c$ - волновое число в вакууме. Комплексную диэлектрическую проницаемость среды $\varepsilon(x)$ в отсутствии флуктуаций считаем периодической:

$$\varepsilon(x) = \varepsilon_0 + 2\varepsilon_1 \cos(2\pi x/d),$$
 (2)

Имея в виду приложение к рентгеновским зеркалам, среднее значение проницаемости в среде будем полагать близким к вакуумному $\varepsilon_0 \cong 1$ при малой глубине модуляции $\varepsilon_1 << 1$.

Поля внутри среды представляются в виде суперпозиции встречных волн

$$E(x) = E_{-} \exp(-iqx/2) + E_{+} \exp(iqx/2), (3)$$

где амплитуды E_{\pm} подчиняются «укороченными» уравнениями (характерное изменение E_{\pm} происходит на длине экстинкции). Амплитудные коэффициенты отражения $r(L) = E_{+}(L) / E_{-}(L)$ и прохождения $t(L) = E_{-}(L)$ системы толщиной L являются решением системы нелинейных уравнения первого порядка:

$$\begin{cases} \frac{dr}{dL} = 2i\hat{u}r + i\hat{\Delta}(1+r^2), \quad r(0) = 0, \\ \frac{dt}{dL} = -i(\hat{u} + \hat{\Delta}r)t, \quad t(0) = 1, \end{cases}$$
(4)

где использованы обозначения

$$\hat{u} = \frac{1}{q} \left[k_0^2 (\varepsilon_0 - \sin^2(\theta)) - q^2 \right], \ \hat{\Delta} = k_0^2 \varepsilon_1 d / 2\pi \ . \ (5)$$

В общем случае это комплексные величины: однако, в данной работе мы ограничимся рассмотрением среды, для которой коэффициент поглощения $\operatorname{Im} \mathcal{E}(x)$ имеет только нулевую гармонику, $\hat{\Delta} \equiv \Delta$. Параметр $\operatorname{Re} \hat{u} = u$ отвечает за отстройку от брэгговского резонанса (при точном резонансе u = 0), ширина резонансной области равна Δ , величина $\Gamma = \operatorname{Im} \hat{u}$ определяет поглощение в среде: $\Gamma \propto \operatorname{Im} \mathcal{E}_0(x)$.

Флуктуации любых параметров МС, в частности, толщин слоев, диэлектрических проницаемостей или плотностей в слоях, в результате будут приводить к случайным изменениям основных параметров u, Γ, Δ , характеризующих резонанс. В связи с этим выберем наиболее общую модель флуктуаций в системе, вводя взаимно независимые случайные добавки ко всем основным параметрам: $u(L) = u_0 + \delta u(L)$, $\Gamma(L) = \Gamma_0 + \delta \Gamma(L)$, $\Delta(L) = \Delta_0 + \delta \Delta(L)$, где u_0 , Γ_0 , Δ_0 -средние значения, а $\delta u(L)$, $\delta \Gamma(L)$, $\delta \Delta(L) - \delta$ -коррелированные случайные процессы с гауссовыми функциями распределения (масштабы флуктуаций определяются дисперсиями: D_u для $\delta u(L)$, D_{Γ} для $\delta \Gamma(L)$ и

 \mathbf{D}_{Δ} для $\delta \Delta(L)$).

Анализ отражательных и пропускательных характеристик MC основан на системе нелинейных уравнений(4), которые решались как аналитическими (теория возмущений, метод Фоккера-Планка), так и численными методами (рекуррентные уравнения Паратта). Перечислим основные результаты работы.

Кинематическое приближение. Для малых толщин среды $\Delta_0 L \ll 1$, $|r(L)| \ll 1$, решение первого уравнения системы (4) записывается в виде:

$$r(L) = i e^{2i \int_{0}^{L} u(l) dl} \int_{0}^{L} \Delta(l) e^{-2i \int_{0}^{l} u(\lambda) d\lambda} dl. \quad (6)$$

Выражение (6) позволяет вычислить коэффициент отражения по интенсивности $R(L)=r(L)r^*(L)$ и все его моменты. Средний коэффициент отражения приближенно описывается выражением:

$$\langle R(L) \rangle \cong \frac{\Delta_0^2 (1 - \cos 2u_0 L)}{2u_0^2} + 2D_{\Delta} L + 2\Delta_0^2 D_u \frac{(\sin 2u_0 L - 2u_0 L \cos 2u_0 L)}{u_0^3} + 8D_{\Delta} D_u L^2.$$

Можно выделить две существенно различных ситуации. При $\Delta_0=0$ получаем $\langle R(L)\rangle \cong 2D_{\Delta}L + 8D_{\Delta}D_{u}L^{2}$. При $\Delta_{0}\neq 0$ малые (в смысле $D_{\Delta} <<\Delta_{0}\cdot(\Delta_{0}L)$) флуктуации ширины щели приводят к зависимости $D_{R}(L)\cong 8\Delta_{0}^{2}D_{\Delta}L^{3}$, что означает эффективное уменьшение дисперсии коэффициента отражения с длиной: $\sqrt{D_{R}(L)}/\langle R(L)\rangle \propto 1/\sqrt{L}$. В этом случае флуктуации положения столика D_{u} вносят лишь незначительную поправку. Характер зависимости меняется, если при $\Delta_{0}\neq 0$ положить $D_{\Delta}=0$. В этом случае $D_{R}(L)\cong \frac{2^{8}}{3}\Delta_{0}^{4}D_{u}^{2}L^{6}$, соответст-

в этом случае $D_R(L) = \frac{1}{3} \Delta_0 D_u L$, соответственно, с увеличением длины наблюдается эффективное уширение распределения коэффициента отражения: $\sqrt{D_R(L)} / \langle R(L) \rangle \propto L$.

Динамическое приближение. Уравнения (4) могут быть параметризованы действительными переменными, например, путем ведения модулей коэффициентов отражения и пропускания: $r = \rho e^{i\varphi}$ и $t = \tau e^{i\psi}$. Для модулей и фаз можно написать масштабные уравнения, которые решаются методом Фоккера-Планка.

Для изучения распределения фазы коэффициента отражения ф развита модель (по аналогии с уравнением маятника, движущегося в вязкой среде под действием случайных толчков), позволяющая понять неоднородное распределение фазы в различных режимах. При этом полученные зависимости для функции распределения справедливы как для непоглощающей среды, так и для среды со слабым поглощением

Если параметры системы не испытывают флуктуаций, то при поглощении существуют стационарные решения для ρ_0 , φ_0 , которые нетрудно получить из (4). В центре столика Дарвина при условии малого затухания $\Gamma_0 \ll \Delta_0$ эти соотношения дают $\varphi_0 = 0$, $\mathbf{R}_0 \cong 1 - 2\Gamma_0 / \Delta_0$. При увеличении поглощения, очевидно, $\mathbf{R}_0 \rightarrow 0$. Используя малость случайных величин, возможно составить и решить уравнение Фоккера-Планка для функции распределения (усредненное по $\delta \varphi$), которое имеет частное стационарное решение, представляющее собой гауссово распределение:

$$W_{\infty}(\partial R) = C \exp\left(-\frac{(\partial R)^2}{2\sigma_R^2}\right),\tag{7}$$

где $\sigma_R^2 = \sigma_\rho^2 R_0 (1 - R_0)^2$.

Таким образом, распределение наблюдаемых характеристик MC существенно зависит от параметров системы: оно может быть как узким (для «самоусредняющихся» величин), так и широким (для «несамоуследняющихся»). Данное свойство необходимо учитывать при проектировании MC с заданными свойствами.

Работа поддержана грантами РФФИ 04-02-17067, 05-02-17340.

 Зеркальная рентгеновская оптика.
 А.В.Виноградов и др. Л. Машиностр. 1989. С. 79.
 J.B. Shellan, P. Agmon, P. Yen, and A. Yariv // J.Opt.Soc.Am. V. 68, № 1, р. 18 (1978).

[3] А.М. Сатанин, М.М. Токман// Рентгеновская оптика–2003. Материалы совещания, с. 344, ИФМ, Н.Новгород (2003); Поверхность. Рентгеновские, синхротронные и нейтронные исследования. т.5, с.19 (2005).

Сечения поглощения ультрамягкого рентгеновского излучения пленок ряда соединений К, Са и Sc в интервале энергий 250 - 1400 эВ.

<u>В.Н. Сивков¹</u>, А.С. Виноградов², С.В. Некипелов¹, Д.В. Сивков¹,

¹ Сыктывкарский государственный университет, г.Сыктывкар, 167001, Россия

² Институт физики Санкт-Петербургского государственного университета, г. Санкт-Петербург, 198504,

Россия

В настоящей работе проведены исследования спектральных зависимостей сечений поглощения тонких пленок KCl, CaF₂ и Sc₂O₃ в широком интервале энергий квантов 250 - 1400 эВ на рентгеновских характеристических линиях и в области L₂₃ – порогов ионизации атомов К, Са и Sc с использованием непрерывного излучения с целью изучения коллапса 3d - электронов в ряду аргоноподобных ионов K⁺, Ca²⁺ и Sc³⁺, который согласно теоретическим оценкам обладает рядом особенностей [1]. Известно, что для 3d- электронов в атомах переходных элементов характерно некулоновское поведение внутриатомного потенциала, приводящее к коллапсу электронной орбиты с изменением заряда ядра. В ряду электронейтральных атомов коллапс 3d -орбиталей согласно расчетам начинается с элемента с номером Z=21 (скандий) [1]. В ближней тонкой структуре (БТС) рентгеновских спектров поглощения (РСП) свободных атомов 3d - переходных элементов коллапс проявляется в перераспределении сил осцилляторов между дискретной и непрерывной частями спектров. Когда атомный остов имеет нормальную конфигурацию и возбужден лишь один валентный электрон, то коллапс происходит уже для атома Са, который предшествует элементу, содержащему этот электрон в нормальной конфигурации [1]. Возбуждение внутреннего электрона в атоме приводит к увеличению эффективного заряда ядра, поэтому в конфигурации с внутренней вакансией коллапс 3d - электрона уже наступает для атома калия, что подтверждается появлением узких интенсивных линий в L2.3 спектре атома К [2]. В ионных соединениях отсутствие электронов в валентной оболочке и наличие электроотрицательного окружения также оказывают влияние на состояния 3d – электронов, что проявляется в появлении высокоинтенсивной структуры в начальной области БТС L₂₃ – спектров поглощения атомов К, Са и Sc в кристаллах KCl, CaF₂, Sc₂O₃ [3]. Учитывая, что сила осциллятора f рентгеновских 2p_{3/2.1/2}→3d переходов непосредственно связана с пространственной локализацией волновой функции возбужденного электрона, представляется важным исследовать закономерности спектральных распределений силы осцилляторов вблизи L_{2,3} - порогов ионизации атомов 3d -

переходных элементов в широком круге соединений. Ранее нами были проведены измерения распределения f в области БТС L_{2.3} – спектров поглощении ряда 3d – переходных металлов от Са до Си и было показано, что коллапс 3d орбиталей при переходе от атома Ar к атомам К, Са и Sc проявляется в резком увеличении силы осцилляторов 2p_{3/2,1/2}→3d переходов в спектрах этих атомов в металлах, которая достигает максимальной величины для металлического Sc. Естественно ожидать новых особенностей проявления коллапса в спектрах ряда изоэлектронных ионов К⁺, Са⁺² и Sc⁺³ в соединений КСl, CaF₂ и Sc₂O₃ обусловленных влиянием степени ионизации электроотрицательного окружения поглощающего рентгеновский квант атома.

Исследования БТС L_{2,3} – спектров поглощения проводились методом прямого фотопоглощения с помощью рентгеновского спектрометра-монохроматора РСМ-500. Образцы для исследования приготовлялись путем термического испарения в вакууме поликристаллических порошков KCl, CaF₂ и Sc₂O₃ на свободные титановые пленки. Толщина образцов варьировалась в интервале 30нм÷160нм.

Спектральные зависимости сечений поглощения тонких пленок KCl, CaF₂ и Sc₂O₃, полученные с использованием непрерывного монохроматизированного излучения с корректным учетом рассеянного фона и аппаратурных искажений путем экстраполяции к «нулевой» толщине образца, приведены на рис.1. На рис.2 показаны спектральные зависимости интегральных сил осцилляторов в припороговой области L₂₃ - спектров поглощения атомарного Ar[4] и атомов К, Са и Sc в кристаллах KNO₃, KCl, CaF₂ и Sc₂O₃. Наличие интенсивных пиков в L_{2,3} спектрах поглощения ионов К⁺, Ca²⁺ и Sc³⁺ в кристаллах KCl, CaF_2 и Sc_2O_3 свидетельствует о том, что коллапс 3d-орбитали имеет место уже в ионе K^+ . Из сравнения зависимостей $\Sigma f(\varepsilon)$ исследованных соединений (см. рис.2) видно, что с ростом степени ионизации в ряду аргоноподобных ионов К⁺→Ca²⁺,Sc³⁺ происходит уменьшение суммы сил осцилляторов как в узкой припороговой области спектра (0÷10эВ), так и с учетом поглощения в области коротковолнового континуума(0 ÷60эВ).

<u>Рис.1.</u> Спектральные зависимости сечения поглощения в области $L_{2,3}$ края поглощения в кристаллах KCl, CaF₂ и Sc₂O₃. В случае Sc₂O₃ спектральная зависимость **ס** приведена в расчете на один атом Sc. Пунктирной линией отмечены **ס**, экстраполированные по степенному закону из длинноволновой области спектра. Точками и вертикальными отрезками указаны значения **ס**, измеренные на рентгеновских эмиссионных линиях, и их погрешности.

Рис.2. Спектральные зависимости интегральных сил осцилляторов в припороговой области $L_{2,3}$ – спектров поглощения атомарного Ar [4] и атомов K, Ca и Sc в кристаллах KNO₃, KCl, CaF₂ и Sc₂O₃.

Сравнение распределений сил осцилляторов в $L_{2,3}$ – спектрах поглощения пленок CaF₂, Sc₂O и в спектрах металлов Ca и Sc показало, что: (1) при переходе от металла к кристаллу происходит уменьшение суммы сил осцилляторов как в начальной области поглощения, так и в широком интервале энергий фотоэлектронов; (2) с ростом степени ионизации при переходе от Ca^{2+} к Sc^{3+} суммы силы осцилляторов в спектрах кристаллов по сравнению со спектрами металлов значительно уменьшаются. Таким образом, полученные экспериментальные результаты позволяют полагать, что в ряду исследованных ионных кристаллов происходит ослабление коллапса с ростом степени ионизации поглощающего атома в изоэлектронном ряду K^+ , Ca^{2+} и Sc^{3+} .

Исследования проведены при финансовой поддержке Российского фонда фундаментальных исследований грант № 04-02-17216.

- [1] Каразия Р.И., УФН, 135, вып.1, 79(1981)
- [2] Mansfield M.W.D., Proc. R. Soc. London A, 346, 555(1975).
- [3] Майсте А.А., Руус Р.Э., Эланго М.А., ЖЭТФ, 79, 1671(1980).
- [4] Лукирский. А.П., Зимкина Т.М. Изв. АН СССР сер.физ. <u>27</u>,324-329, 1963.

Особенности дифракции рентгеновских лучей на деформациях локализованных параллельно поверхности образца.

И.А.Смирнова¹, <u>Э.В.Суворов</u>¹, Е.В.Шулаков²

¹ Институт физики твердого тела РАН, Черноголовка, Московская область, Россия ² Институт проблем технологии микроэлектроники РАН, Черноголовка, Московская область, Россия

E-mail: suvorov@issp.ac.ru

В работах [1-3] описаны дифракционные явления. возникающие при рассеянии рентгеновской волны для двух особых положений дислокаций, когда ось дефекта перпендикулярна плоскости рассеяния и когда ось дефекта лежит в плоскости рассеяния перпендикулярно дифракции. вектору В представленной работе исследованы закономерности дифракции рентгеновского

излучения для случая, когда ось дефекта располагается паралвектору лельно дифракции. Этот случай представляет особый интерес т.к. он является частным олномерным случаем при

исследованиях тонких приповерхностных слоев монокристаллах используемых в в микроэлектронике, оптоэлектронике И рентгеновской оптике. Дислокации в данном случае являются лишь удобной хорошо исследованной моделью для изучения рассеяния рентгеновского волнового поля на локализованных деформациях в реальных кристаллах.

рисунке Ha 1 показана геометрия случая секционной эксперимента для топографии. Ось дислокации здесь пересекает весь треугольник рассеяния вдоль вектора дифракции и, следовательно, все точки дефекта лежащие в треугольнике рассеяния будут вносить изображение дефекта, вклад В выходной формируемое на поверхности кристалла. Взаимодействие волнового поля с сильно искаженной областью вблизи оси дефекта приводит, как было показано в работах [4-7], к эффектам отражения волнового поля аналогично тому, как это происходит на границе раздела кристалл-вакуум. Поэтому каждая точка оси дефекта становится источником на образуется новый рассеянных волн, т.е. треугольник рассеяния, и на выходной поверхности кристалла будет формироваться сложное изображение дефекта являющееся суперпозицией всех рассеянных волн.

Для введения в кристалл желаемого типа дислокаций применялась методика, описанная в [8,9]. Исходные бездислокационные образцы подвергались четырех опорному изгибу. дислокаций Источниками служили либо специально нанесенная индентором вдоль длинного ребра призмы царапина, либо (при больших нагрузках) внутренние концентраторы напряжений. Условия деформации, способ нанесения царапины, постоянная нагрузка на образец 2-10 кГ/мм², температура 500-600°С и время деформирования - подбирались таким чтобы в кристалле возникали образом. преимущественно единичные дислокационные полупетли. Размер полупетель и глубину залегания дислокаций, можно оценить, зная динамические характеристики дислокации в используемых кристаллах [8].

Для численного моделирования и анализа рентгеновского дифракционного изображения дислокации в кристаллах использовалась система дифференциальных уравнений Такаги [10]:

$$\frac{\partial \Psi_0}{\partial s_0} = -i\pi KC \chi_{-H} \Psi_H$$
$$\frac{\partial \Psi_H}{\partial s_H} = -i\pi KC \chi_H \Psi_0 + i2\pi K \beta_H \Psi_H$$

Здесь ψ_0 и ψ_H - амплитуды прошедшей и дифрагированной волн, **К** – волновой вектор, **Н** – вектор обратной решетки, χ_H коэффициенты поляризуемости кристалла, s_0 и s_h – направления падающей и рассеянных волн, С – поляризационный фактор. Функция β_H характеризует локальную разориентацию отражающих плоскостей и связана с полем смещений внутри кристалла U(x, y, z)соотношением $\beta_{\mu} = -\frac{1}{K} \frac{\partial}{\partial s_{\mu}}$ (HU) При решении задачи для U(x, y, z) использовалось выражение, описывающее поле смещений от прямолинейной дислокации в изотропной бесконечной среде [11]. Граничные условия выбирались, как было предложено в [12].

На рис.2 (а) - приведена секционная топограмма кристалла кремния С прямолинейной пересекающей дислокацией вектора треугольник рассеяния вдоль ЭВМ дифракции, (**б**) рассчитанная на _

соответствующая секционная топограмма, (в) рассчитанное распределение волнового поля внутри треугольника рассеяния.

Рис.2. (а) - Фрагмент секционной топограммы Si(220) винтовой дислокации параллельной поверхности кристалла и вектору обратной решетки, излучение MoK_{al} , t=1090мкм, $\mu t=1.62$, ширина изображения, винтовая дислокация расположена на глубине 620 мкм; (б) - моделирование дифракционного эксперимента приведенного на рис.1a, $\sigma + \pi$ - поляризация; (в) - распределение интенсивности дифрагированной волны в объеме кристалла, σ - поляризация.

Для объяснения наблюдаемого изображения ближнее поле дислокации в этом случае можно приближенно рассматривать как полоски двух близко расположенных дефектов упаковки с вектором сдвига $\mathbf{U} = \pm \mathbf{b}/2$, где \mathbf{b} – вектор Бюргерса [13]. В этом случае вновь образующееся волновое поле под дислокацией будет очевидно аналагочно полю возникающему в известном случае дефекта упаковки [14, 15]. Это значит, что изображение ближнего поля дислокаций будет состоять из двух частей – динамической осциллирующей тени образующейся расходящимся конусом лучей под дислокацией и дифракционной фокусировке лучей нового волнового поля формируемого сходящимся пучком траекторий [16].

Рассмотренный пример показывает, насколько многообразны, могут быть различные интерференционные эффекты, участвующие в образовании дифракционного изображения дислокаций. Сильно искаженная область дислокации, т.е. область вблизи ее ядра, отображаются дифрагированной волной как область возмущения рентгеновского волнового поля распространяющегося в кристалле. Каждая такая точка является источником распространения нового волнового поля.

Работа поддержана Российским фондом фундаментальных исследований (грант № 06-02-16536-а).

 Э.В.Суворов, И.А.Смирнова, Е.В.Шулаков Поверхность. Рентгеновские синхротронные и нейтронные исследования, 4, 100, (2004)
 Э.В.Суворов, И.А.Смирнова, Е.В.Шулаков Поверхность. Рентгеновские синхротронные и нейтронные исследования, 9, 64, (2004) [3] Э.В.Суворов, И.А.Смирнова, Е.В.Шулаков Поверхность. Рентгеновские синхротронные и нейтронные исследования, 12, 12, (2005)
[4] И.А.Смирнова, Е.В.Шулаков, Э.В.Суворов, Поверхность. Рентгеновские синхротронные и нейтронные исследования, Поверхность, 7, 32, (1996)

[5] M.V.Kovalchuk, E.V.Suvorov, O.P.Aleshko-Ozhevskii, Yu.V.Pisarevskii, V.L.Nosik, L.A.Smirnova, M.A.Solomko Nuclear Instruments and Methods in Phusics Research A 405, 449, (1998) [6] И.А.Смирнова, Е.В.Шулаков, Э.В.Суворов, О.П.Алешко-Ожевский, Поверхность, Рентгеновские синхротронные и нейтронные исследования, 1, 99, (2000) [7] И.А.Смирнова, Е.В.Шулаков, Э.В.Суворов Поверхность. Рентгеновские синхротронные и нейтронные исследования, 1, 101, (2002) [8] Никитенко В.И., Ерофеев В.Н., Надгорная Н.М. // Сб. Динамика дислокаций. Физ.-техн. институт низких температур АН УССР, Харьков (1968)[9] Ерофеев В.Н., Никитенко В.И., Половинкина В.И., Суворов. Э.В. //

Кристаллография. **16**, 1, 190 (1971) [10] Такаді S. // J. *Phys.Soc.Japan*, **26**, 5, 1239 (1969) [11] R.de Wit // *Phys.Stat.Sol*, **20**, 567, (1967) [12] Epelboin Y., Riglet P. // *Phys. Stat. Sol.(a)*, **54**, 2,. 547 (1979) [13] Инденбом В.Л., Чуховский Ф.Н., Сдободецкий И.Ш. // Кристаллография **19**, I, 35; 42 (1974)

[14] Kato N., Usami K., Katagawa N. // Advances in X-ray Analysis **10**, 46 (1967)

[15] Authier A.//Dynamical Theory of X-Ray

Diffraction. Oxford Science Publications (2001)

[16] Инденбом В.Л., Слободецкий И.Ш., Труни

К.Г. // ЖЭТФ **66**, 3, 1110 (1974)

Туннелирование рентгеновских фотонов через тонкую пленку в условиях полного внутреннего отражения

А.Г. Турьянский, И.В. Пиршин

Физический институт им. П.Н. Лебедева РАН, Ленинский пр. 53, Москва, Россия e-mail: tour@mail1.lebedev.ru

Прохождение оптического излучения через тонкий слой с оптически менее плотной средой при выполнении условия полного внутреннего отражения (ПВО) рассматривают как туннелирование фотонов через оптический барьер [1]. Как показано в [2,3], в структурах на основе нового класса материалов с отрицательным показателем преломления вероятность туннелирования может резко возрастать. В настоящей работе показано, что эффект туннелирования может быть зарегистрирован в рентгеновском диапазоне ~ 10 кэВ на структуре пленка - подложка. При этом локализация информации о параметрах пленки определяется длиной свободного пробега фотонов в подложке, что позволяет резко повысить пространственное разрешение при определении толщин по сравнению с рентгеновской рефлектометрией.

Рис. 1. Схема хода лучей в структуре.

Измерения производились с помощью двухволнового рентгеновского рефлектометра, схема которого описана в [4]. Положение образца относительно падающего излучения показано на рис. 1. Пучок с угловой расходимостью 20" направлялся через боковую поверхность образца. Ребро боковой грани образца совмещалось с осью вращения рефлектометра. Таким образом, при малых поворотах плотность потока рентгеновского излучения, падающего на боковую грань, сохранялась постоянной. Угловая диаграмма интенсивности I(w)прошедшего через образец излучения при фиксированных углах скольжения первичного пучка θ_1 измерялась путем сканирования приемной щелью шириной s = 30 и 100 мкм, помещенной на расстоянии 225 мм от оси рефлектометра. Угол отклонения у прошедшего через образец излучения отсчитывался от оси первичного пучка D. Из проходящего через приемную щель излучения полупрозрачными монохроматорами выделялись спектральные линии CuK_{α} (0.154 нм) и CuK_{β} (0.139 нм). Угловой шаг сканирования и поток прямого излучения на линии CuK_{α} составляли соответственно 3.6" и 10⁶ квант/с.

Рис. 2. Угловые диаграммы интенсивности $I(\psi)$ прошедшего через образец излучения при фиксированных углах скольжения первичного пучка θ_1 .

Пленка $NiSi_2$ толщиной 18 нм наносилась на подложку монокристаллического Si методом магнетронного распыления. По данным рентгеновской рефлектометрии толщина неокис-

ленного слоя $NiSi_2$ составляла 12.8 нм, шероховатость границ раздела не превышала 0,5 нм. Из центральной части диска путем скрайбирования со стороны, противоположной пленке, и последующего надлома изготавливалась пластина шириной 1 см. Согласно табличным данным плотность и действительная часть декремента показателя преломления δ при λ =0.154 нм для $NiSi_2$ и Si составляют соответственно 7,2 г/см³, 21.5·10⁻⁶ и 2,33 г/см³, 7.57·10⁻⁶. Таким образом, необходимое условие ПВО $1-\delta(Si)>1-\delta(NiSi_2)$ на границе раздела $Si/NiSi_2$ заведомо выполняется. При этом критический угол ПВО θ_c (λ =0,154 нм) равен 0,304°.

Результаты измерения угловых диаграмм интенсивности $I(\psi)$ прошедшего через образец излучения при фиксированных углах скольжения первичного пучка θ_1 представлены на рис. 2а-с. Угол отклонения ψ отсчитывается от направления оси прямого пучка (см. рис. 1). Резкое увеличение интенсивности при углах ψ→0 связано с прохождением части прямого пучка над краем образца. Широкий пик справа на рис. 2а-с обусловлен рефракцией рентгеновского излучения, проходящего через торец слоя NiSi2. Соответствующие максимумы рефракции для линий CuK_{α} и CuK_{β} обозначены Rr_1 и Rr_2 . На диаграмме, измеренной на линии CuK_{β} , пик Rr_{2} практически отсутствует в связи со скачком фотопоглощения в Ni на длинах волн $\lambda < 0.149$ нм. туннелирования удается Поток измерить, начиная от угла скольжения $\theta_1 = 0.12^{\circ}$ (рис. 2a). Отметим следующие особенности (см. рис. 2b): 1 - угловая ширина пиков туннелирования T₁, T₂ совпадает с шириной аппаратной функции равной 0,01°, 2 - угол выхода с точностью ~0,001° совпадает с углом преломления для границы раздела Si/воздух, 3 – интенсивность пиков T_1 , T_2 в отличие от Rr_1 и Rr_2 сопоставима по порядку величины. Последнее является важным подтверждением того, что пики Т₁, Т₂ обусловлены туннелированием через рентгенооптический барьер. При углах скольжения $\theta_1 \ge \theta_c$, (рис. 2с), где θ_c – критический угол ПВО на границе раздела Si/NiSi₂, наблюдается только интенсивный пик излучения проходящего ИЗ кремния в воздух преломляющегося последовательно на границах раздела Si/пленка и пленка/воздух. Интенсивность пика излучения, вошедшего в пленку NiSi2 с торца и преломленного на границе пленка/воздух, на 2-3 порядка меньше и на графике не наблюдается.

На рис. 3 представлены экспериментальная (кривая 1) и расчетная (кривая 2) угловые зависимости интегральной интенсивности Φ прошедшего через пленку рентгеновского излучения от угла скольжения θ_1 при $\lambda=0.154$ нм. Значения функции Φ находились путем численного интегрирования экспериментальной кривой $I(\psi)$ в области пика туннелирования и вычитания фонового сигнала. Диапазон углов $\theta_1 < \theta_c \approx 0.304^\circ$ – область туннелирования. Расчет величины Ф проводился с использованием рекуррентных соотношений [5] и учета поглощения при прохождении пучка через подложку.

Рис. 3. Экспериментальная (1) и расчетная (2) угловые зависимости интенсивности потока туннелирующих фотонов в условиях ПВО на границе раздела *Si/NiSi*₂.

Как видно из сравнения, экспериментальная и расчетная кривые достаточно хорошо совпадают. Представленные расчетные данные удается получить при выборе эффективной толщины пленки $D_f=18.5$ нм.

В заключение отметим, что для таких материалов как GaAs, Al₂O₃, Si, плавленый кварц, которые наиболее часто используются в качестве подложек, при λ=0.154 нм средняя длина пробега фотонов находится в пределах 30÷140 мкм и соответственно эффективная ширина области туннелирования составляет ту же величину от торцевой грани. Эта величина приблизительно на два порядка меньше характерного размера области, облучаемой при измерениях методом рентгеновской рефлектометрии. Поэтому на практике предложенная трансмитометрическая быть использована схема может лпя исследования краевых эффектов в технологии изготовления пленочных наноструктур и для контроля покрытий на поверхности с радиусом кривизны до 0.3÷0.5 м [6].

[1] C. Hirlimann, B. Thomas, D. Boosé. Europhysics Lett., **69** (1), 48 (2005).

[2] Zhang, Z.M., Fu, C.J. Appl. Physics Letters, **80**, 1097 (2002).

[3] K. Park, B.J Lee, C.J Fu, et al. J. Opt. Society America B, **22**, 1016 (2005).

[4] А.Г. Турьянский, А.В. Виноградов, И.В. Пиршин. ПТЭ, № 1, (1999) 105.

[5] П.Х. Бернинг. Теория и методы расчета оптических свойств тонких пленок. Физика тонких пленок, т.1, М., Мир, 1967.

[6] А.Г. Турьянский, И.В. Пиршин. Письма в ЖЭТФ **81** (10), 610 (2005).

Учет каналов потерь интенсивности фокусировки для элементов преломляющей оптики

<u>Л.Г.Шабельников</u>

Институт проблем технологии микроэлектроники и особочистых материалов (ИПТМ) РАН, г.Черноголовка, ул.Институтская, 6, 142432, Московская обл.

Взаимодействие проходящего излучения с преломляющей линзой приводит к появлению каналов потерь интенсивности в фокальном пятне, что отмечено еще в первых работах по составным преломляющим линзам [1, 2]. В работе коэффициент данной введен эффективности фокусировки как отношение интегральной интенсивности в фокальном пятне J_{foc} к интенсивности излучения TJ_0 , прошедшего через преломляющее устройство с учетом интегрального пропускания Т [3, 4].. Следует указать, что такое определение эффективности отличается от общепринятого определения для зонных пластин Френеля И других фокусирующих устройств [5]. Для каждого из каналов потерь теперь необходимо определить долю потерь η_k , тогда для эффективности фокусировки можно записать:

$$\varepsilon = \frac{J_{foc}}{TJ_0} = \prod_k (1 - \eta_k) \tag{1}$$

В качестве каналов потерь рассмотрены потери, связанные с несовершенствами преломляющего профиля - точностью аппроксимации параболы [6], а также со случайными отклонениями профиля от идеального [7]. В настоящей работе соотношения, выведенные ранее для потерь единичного интенсивности для профиля, имеющего случайные отклонения [7], обобщены для составного набора профилей. Показано, что случайные сбои фаз на единичных профилях кратным образом влияют на общее понижение интенсивности для всего набора. Если принять степень ослабления единичным профилем как всего набора справедливо то для $\langle I_{\epsilon} \rangle$, соотношение $\langle I_s \rangle / I_0 = [\langle I_s \rangle]^p$, где p – кратность набора.

Взаимодействие проходящего излучения с материалом преломляющей линзы так же приводит к появлению каналов потерь интенсивности в фокальном пятне. В зависимости от кристаллического состояния материала линзы здесь могут быть выделены малоугловое рассеяние, а также рассеяние в более широком угловом интервале, заключающееся в появлении набора линий Дебая. Интенсивности потерь на малоугловое рассеяние (в англоязычной литературе SAXS -small angle X-ray scattering) в случае параболического преломляющего профиля описываются выражением, где учтены численные значения всех множителей, в том числе для рассеивающей способности одного электрона

$$\eta_{SAXS} = \frac{I_{SAXS}}{I_0} = \frac{0.15 * 10^{-3}}{I_0} \int_0^\infty I_m(\varepsilon) d\varepsilon \qquad (2)$$

где $I_m(\varepsilon)$ - интенсивность рассеяния на угол ε , измеренная в эксперименте (см. например [8]).

Выражение (2) является поправочными коэффициентом на SAXS, входящий в (1). Однако его точный численный расчет по графику зависимости $I_{m}(\mathcal{E})$ является затруднительным ввиду необходимости экстраполяции значений $I_m(\varepsilon)$ к $\varepsilon = 0$, которая может внести значительную неточность в определяемый коэффициент. Поэтому (2) может быть использовано для полуколичественных оценок применимости различных материалов для преломляющих линз, если измерения SAXS для них проведены в сравнимых условиях.

Проведен анализ потерь на Дебаевское рассеяние (в англоязычной литературе WAXS -Wide angle X-ray scattering) для линз из алмаза [8]. Алмаз является уникальным материалом, имеющим даже в поликристаллическом состоянии неоспоримые преимущества перед материалами, которые ранее остальными использовались для создания преломляющих линз. Кристаллическая ячейка алмаза описывается одной из наивысших групп пространственной симметрии Fd3m и имеет относительно небольшое значение параметра а= 3.566 А. Вследствие этого в картине WAXS рассеяния присутствует ограниченный набор дифракционных линий, разрешенных лля гранецентрированной ячейки алмаза. Полная интенсивность рассеяния WAXS определяется суммой по всем линиям (hkl), но для материала линзы с кубической ячейкой суммирование может быть проведено по всем допустимым значениям фактора $q^2 = h^2 + k^2 + l^2$ как $\eta_{WAXS} = \frac{I_{WAXS}}{l}$

$$\eta_{WAXS} = 7,42*10^{-23} \frac{AFHT}{V_c^2} \sum_{q} |F(q)|^2 p(q) \frac{(E^2 - E_G^2(q))}{E^2 E_G(q)}$$
(3)

Здесь параметры линзы *AFHT* представляют соответственно ее апертуру, фокусное расстояние, глубину профиля и интегральное пропускание. F(q) - структурная амплитуда и p(q) - фактор повторяемости для линии (hkl), *E*-энергия излучения, $E_G = \frac{12,34}{2a}q(hkl)$ - граничная

энергия для возбуждения данной линии, положение которой показано на Рис.1.

Потери WAXS монотонным образом растут при увеличении энергии, так как при увеличении фактора *q* в сумме добавляется

Рис.1. Часть плоскости в обратном пространстве решетки алмаза и положение сферы Эвальда для граничной энергии E_G

новое слагаемое в пределах полосы энергий $E_G(q) \le E \le E_G(q+1)$. Данный фактор потерь может приводить к заметному различию между расчетным и измеряемым факторами усиления линзы. Интенсивность потерь значительно выше, чем у алмаза, для неорганических материалов, которые в поликристаллическом виде могут быть использованы для формирования линз.

Технологические погрешности формирования преломляющих профилей приводят в общем случае к размытию области каустики, где происходят не только потери интенсивности, но и деформация фокального пятна. Указанные эффекты были рассмотрены в [2] с помощью численных расчетов интеграла Френеля -Кирхгофа для набора модельных искажений профиля. Специфическим видом погрешностей формирования планарных линз является наклон стенок преломляющих профилей, что приводит к фокального пятна расщеплению (Рис.2), изученному В эксперименте [9] путем И численного моделирования [6, 9]. Ниже

Рис.2. Расщепление фокального пятна [9] при наклоне стенке преломляющих профилей.

приведены уравнения в параметрической форме для кривой сечения преломляющего профиля плоскостью z = const, где в качестве параметра выступает x_0 - абсцисса точки на исходной параболе. Таким образом, в каждом плоском сечении кривая не является параболой ввиду нелинейной добавки, связанной с проекциями h(z) смещения фронта травления:

$$x = x_0 + \frac{x_0 h(z)}{\sqrt{x_0^2 + R_c^2}}$$

$$y = \frac{x_0^2}{2R_c} - \frac{h(z)R_c}{\sqrt{x_0^2 + R_c^2}}$$
(4)

Соответствующие изменения фокусного расстояния для указанных плоских сечений могут быть найдены как $F(z) = (1 + \frac{h(z)}{R_c})F$.

При фиксированном положении плоскости регистрации для верхних сечений происходит сведение преломленного пучка в точку, в то время как для нижних сечений с увеличенными радиусами кривизны при h(z) > 0 фокусировка еще не достигается в соответствии с [6, 9]. Работа поддержана грантами РФФИ 04–02–17315 и 05–02–08112.

- [1] B.Lengeler, J.Tummler, A.Snigirev et al. J. Appl.Phys., 84 (1998) 5855.
- [2] В.В.Аристов, М.В.Григорьев, С.М. Кузнецов, А. Снигирев, И.Снигирева, К.Рау, Л.Г.Шабельников, М. Хоффманн, Э.Фогес, В.А.Юнкин, Поверхность. Рентгеновские, Синхротронные, Нейтронные Исследования, №1(2001), 13.
- [3] A.Snigirev, V.Kohn, I.Snigireva et al. Proc. SPIE. **3151** (1997) 164.
- [4] P.Elleaume. Nucl.Instr.&Meth. In Phys.Res. A412 (1998) 483.
- [5] А.Мишетт «Оптика мягкого рентгеновского излучения» М.:Мир, (1989) 450
- [6] А.Снигирев, И.Снигирева, М.В.Григорьев, С.М.Кузнецов, В.А.Юнкин, М.В.Чукалина, Л.Г.Шабельников, в сб. «Рентгеновская оптика –2004», ИФМ РАН, Нижний Новгород, 2004, 62
- [7] Аристов В.В., Шабельников Л.Г., Старков В.В., Кузнецов С.М., Цейтлин В.М., Григорьев М.В. Поверхность. Рентгеновские, Синхротронные, Нейтронные Исследования, №1 (2000) 71
- [8]. A.Snigirev, V.Yunkin, I.Snigireva, M.Di Michiel, M.Drakopoulos, S.Kouznetsov, L.Shabel'nikov, M.Grigoriev, V.Ralchenko, I Sychov,. M.Hoffmann, E.Voges, Procs SPIE Design and Microfabrication of Novel X-Ray Optics Editor(s): Mancini, Derrick: 4783 (2002) 1
- [9]. I.Snigireva, V.Yunkin, S.Kuznetsov, M.Grigoriev,M. Chukalina, L.Shabel'nikov, A.Snigirev,M. Hoffmann, E.Voges, Procs SPIE Crystals, Multilayers, and Other Synchrotron Optics Editor(s):T.Ishikawa, A.T.Macrander, J.L.Wood, **5195** (2003) 34.

Внутренняя симметрия и спектральные свойства преломляющих киноформных линз

<u>Л.Г.Шабельников</u>, В.В.Аристов

Институт проблем технологии микроэлектроники и особочистых материалов (ИПТМ) РАН, г.Черноголовка, ул.Институтская, 6, 142432, Московская обл.

Группы точечной симметрии конечного порядка получили свое развитие при рассмотрении простых форм плоскостей, элементы которых определяют внешнюю огранку кристаллов [1]. Аппарат теории групп точечной симметрии хорошо развит к внутренней симметрии применительно элементарных ячеек кристаллических решеток, а так же к анализу оптических спектров кристаллов. Представляется молекулярных плодотворным применение понятий точечной симметрии, в том числе предельных групп симметрии бесконечного порядка, а так же принципа суперпозиции элементов симметрии (принцип Кюри) к анализу свойств таких макроскопических систем, как оптические элементы и системы на их основе.

Ранее группы точечной симметрии систем получения рентгеновских изображений были рассмотрены нами в работах [2, 3]. Теоретический анализ свойств симметрии возник на основе разработок конкретных схем получения рентгеновских стереоскопических изображений, с теневым и с дифракционным топографическим контрастом [4 - 6].

Привлечение аппарата теории групп точечной симметрии применительно к рентгеновским фокусирующим элементам, установить позволяет их взаимную дает эквивалентность возможность И определения априорного характеристик получаемых изображений. Исходными являются следующие основные положения:

- Группа симметрии фокусирующего элемента (системы элементов) действует на наборе его эквивалентных положений.
- ✓ Симметрия изображения, полученного от точечного источника, определяется по принципу Кюри группами элемента G и регистрирующего устройства {∞* m}
- Элементы, имеющие изоморфные группы, дают одинаковые изображения источника.

Рассмотрим внутреннюю симметрию киноформных преломляющих профилей, следствия из законов которой определяют возможные типы размещения параболических сегментов плоскости при создании на планарных профилей. Основой развитого подхода служат установленные ранее свойства точечной симметрии систем формирования рентгеновских стереоскопических изображений. Внутренняя симметрия составного киноформного профиля определяется группой симметрии **G**, образованной из двух подгрупп:

$G=G_t \otimes G_m$ (1)

Подгруппа G_t содержит множество элементов **U**, действие которых сводится к перестановке единичных профилей внутри общего составного набора (Рис. 1). Для них выполнены правила образования группы из множества отдельных элементов. В качестве генератора подгруппы служит операция перестановки соседних

Рис.1. Элементы преобразования составного киноформного профиля

профилей, повторные действия которой мультиплицируют единичный профиль до требуемой кратности набора. Тогда можно записать для подгруппы перестановок:

 $G_t = \{ U^k U^{j}, 0 \leq j, k \leq p \}$ (2)Из (4.15) следует также, что данная подгруппа так же имеет свойство коммутативности. Кроме того, возведение генератора в максимальную степень приводит к единичному элементу, то есть возвращает составной профиль в исходное состояние **U^p = E**. Таким образом, подгруппа G, является циклической. На основании перечисленных свойств подгруппы перестановок можно найти ее неприводимое представление в виде изоморфного отображения на множество унитарных операторов {U= $U^{k}U^{j}, 0 \leq j,k \leq p$.

Элементами второй подгруппы для киноформных преломляющих профилей служат плоскости симметрии, переводящие единичный профиль в себя:

$$G_m = \{E, m_1, m_2, m_3\}$$
 (3)

Здесь плоскость $\mathbf{m_1}$ соответствует отражению киноформного профиля в себя (Рис.2). Вторая плоскость антисимметрии $\mathbf{m_2}$ переворачивает вершины сегментов, и необходимость ее введения вытекает их принципа обратимости хода оптического луча. Плоскость $\mathbf{m_3}$ совпадает с плоскостью планарного элемента. Совместное

Рис.2. Генераторы подгруппы симметрии киноформного профиля и синтез профиля типа «папоротник».

действие плоскостей приводит к появлению центра инверсии единичного профиля.

Минимальный набор сегментов, инвариантный относительно действия обеих плоскостей, соответствует профилю С инвертированными вершинами поочередно групп сегментов, простейшей из которых является профиль поочередно с инвертированными вершинами («папоротник»). Положение вершин сегментов в «папоротнике» а также их чередование относительно плоскости симметрии **m**₁ задается совместным действием отражения в указанной плоскости и операции перестановки соседних единичных профилей **U**. Получаемые виды соседних профилей в «папоротнике», образуют набор эквивалентных позиций, на котором действуют все элементы общей группы G. Число эквивалентных позиций «папоротника» равно порядку подгруппы плоскостей N(S) = 4

Свойства внутренней симметрии киноформных профилей, анализ которых проведен выше, в особенности, наличие подгруппы перестановок, определяют спектральные свойства линз. Базисные функции, инвариантные относительно действия операторов неприводимого представления данной подгруппы перестановок имеют вид

$$\Phi_m(x) = \exp(\frac{2m\pi i}{L}x) \tag{4}$$

где m - целое число, а $L = ML_{\pi}p$ - общая

длина киноформного профиля вдоль оптической оси.

Таким образом, установлено, что для исследуемых профилей является характерным наличие набора собственных пространственных частот с волновыми векторами, кратными основному $K_0 = 2\pi (ML_{\pi}p)^{-1}$. Это означает, что фаза проходящей волны дополняется множителем вида $\Phi_m = \exp(2\pi i m/L)$ и не

изменяется, если $\Phi_m = 1$. Тогда проходящее излучение с волновым вектором $k = 2\pi/\lambda$ будет испытывать резонансные особенности в случае совпадения модулей векторов $k = K_0$.

Анализ спектральных свойств линзы с минимизированным поглощением [7] на основе амплитудной функции пропускания путем разложения в ряд Фурье, где было принято во внимание отличие длины волны падающего излучения от базовой длины волны λ₀, для которой рассчитывалась топология линзы. усиления Показано, что коэффициент интенсивности фокальном пятне в для рассматриваемой линзы имеет максимумы на длинах волн, прямо пропорциональных номеру дифракционного порядка т. Отмеченные особенности фокусировки излучения с разными энергиями могут быть положены в основу аксиального монохроматора, работы рассмотренного в [8], где обсуждаются характеристики данного спектрального прибора. Показано, что спектральное разрешение аксиального монохроматора может достигать значений 10^5 – 10^6 , что сравнимо С монохроматорами на идеальных кристаллах. Работа поддержана грантами РФФИ 04- 02 -17315 и 05 – 02 – 08112.

- [1] Сиротин Ю.И., Шаскольская М.П, Основы кристаллофизики, М.: Наука, 1975, 680.
- [2] Аристов В.В., Шабельников Л.Г. Дефектоскопия, №**8** (1988), 60.
- [3] Аристов В.В., Чуховский Ф.Н., Шабельников Л.Г., Кристаллография №6(1989), 1365.
- [4] В.В.Аристов, П.В.Петрашень, Ф.Н.Чуховский, Л.Г.Шабельников "Способ регистрации рентгеновских топограмм", A.C.1318060, выдано 15.02.87.
- [5] В.В.Аристов, П.В.Петрашень, Ф.Н.Чуховский, Л.Г.Шабельников "Способ регистрации рентгеновских топограмм", А.С.1382170 выдано 15.11.87
- [6] В.В.Аристов, Л.Г.Шабельников "Способ получения рентгеновских топограмм поликристаллов", А.С.1497532 выдано 04. 12.1988.
- [7] V.Aristov, M.Grigoriev, S.Kuznetsov,
 L.Shabelnikov, V.Yunkin, T.Weitkamp,
 C.Rau, I.Snigireva, A.Snigirev, M.Hoffmann,
 E.Voges, Applied Physics Letters, 77, (2000) 4068.
- [8] В.В.Аристов, М.В.Григорьев, С.М. Кузнецов, Л.Г.Шабельников, Поверхность. Рентгеновские, Синхротронные, Нейтронные Исследования, №1(2001), 89

Особенности формирования рентгеновского изображения в области дифракции Фраунгофера.

Е.В. Шулаков

Институт проблем технологии микроэлектроники РАН, Черноголовка, Московская область, Россия e-mail: shulakov@ipmt-hpm.ac.ru

введение

Основы теории дифракции рентгеновского излучения в кристаллах были заложены в начале прошлого века трудами Лауэ [1], Дарвина [2] и Эвальда [3]. Одним из исходных положений было рассеяние плоской волны на кристалле, а результат дифракции интерпретировался как угловое распределение интенсивности.

Впервые несоответствие теории И эксперимента было обнаружено в 1959 году Като и Лангом [4]. При анализе топографических изображений клиновидных кристаллов Si было установлено, что геометрия интерференционной картины принципиально не согласуется с теорией. В связи с этим Като разработал новый вариант теории в приближении падающей сферической волны [5]. В этой теории предполагалось, что дифракционная картина на выходной поверхности кристалла формируется в области геометрического изображения и затем переносится без изменения в плоскость регистрации. Этот подход надолго закрепился в теории и практике рентгеновской топографии.

В конце 70-х годов было обнаружено влияние расстояния источник - плоскость наблюдения на формирование топографического изображения кристалла. Были открыты новые дифракционные явления: динамическая фокусировка рассеянной волны плоским кристаллом И "аномальный маятниковый эффект" [6-8].

Позднее было установлено, что при рассеянии расходящегося пучка на кристалле, также как и в оптике, могут наблюдаться три характерные зоны дифракции: геометрическое изображение, дифракция Френеля и дифракция Фраунгофера. Эти исследования были дополнены построением схемы трехмерных фазовых зон в кристалле - аналоге зон Френеля в оптике [9-10]. Так теория брэгговского отражения получила прямые аналогии в оптике. Этим был получен ответ на вопрос, где в объеме кристалла следует изменить амплитуду или фазу рассеянной волны с целью получения заданного преобразования рассеянного волнового фронта. Полученные результаты открыли путь для создания элементов брэгг - френелевской оптики [11-12].

ТЕОРИЯ

Рассмотрим рассеяние сферической волны $\Psi_0 = R^{-1} \exp(i2\pi R/\lambda)$ в геометрии на прохождение на кристаллической пластине толщиной *t*. С

целью упрощения изложения материала будем рассматривать только случай симметричной дифракции. В первом борновском приближении амплитуда рассеянной волны Ψ_H в точке наблюдения *x* определяется как [9]:

$$\Psi_{H}(x) = A_{0} \int_{-\infty}^{\infty} \operatorname{sinc}(\eta) \exp\left[i2\pi \left(\eta \Phi_{H} - \eta^{2} \sigma^{2} / 2t^{2}\right)\right] d\eta^{(1)}$$

Здесь координата x отсчитывается в плоскости наблюдения от точки 0, соответствующей точному выполнению брэгговского условия на глубине кристалла, равной t/2. A_0 - амплитуда дифрагированной волны в точке x = 0 от пластинки толщиной σ , R_1 - расстояние источник – кристалл, а R_2 - расстояние от кристалла до плоскости наблюдения. $\Phi_H = x/2t\sin\theta$ - параметр отклонения от x = 0. Два важных параметра теории δ и σ определяются выражениями:

$$\delta = (\lambda R)^{1/2}, \qquad \sigma = \delta / 2 \sin \theta.$$
 (2)

Исходя из вида интеграла (1) оптическим аналогом рассматриваемой задачи является рассеяние плоской волны $A_0 \exp(i2\pi K_H R/\lambda)$ на щели $L = t/2\sin\theta$, расположенной на расстоянии $R=R_1+R_2$, от плоскости регистрации. Физический смысл параметра L - ширина волнового поля на выходной поверхности кристалла, а параметра R- расстояние от мнимого источника до плоскости наблюдения (рис. 1).

Рис.1. Схема дифракции сферической волны на кристалле и ее оптический аналог.

Согласно аналогии, при анализе распределения интенсивности $I = |\Psi_H|^2$ можно выделить три характерные зоны наблюдения: 1) область геометрического изображения, 2) область дифракции Френеля и 3) область дифракции Френеля и 3)

1)
$$t \gg \sigma$$
, 2) $t \ge \sigma$, 3) $t < \sigma$ (3)

Рассмотрим особенности дифракции в разных зонах наблюдения. В области 1 распределение интенсивности описывается выражением: $I(x,t) = I_o \text{rect}(\Psi_H)$ и представляет собой геометрическую проекцию треугольника рассеяния в плоскость наблюдения. В зоне дифракции Френеля выражение (1) не имеет аналитического представления. В области 3 выражение (1) сводится к хорошо известной формуле для интенсивности лучей, рассеянных тонкой кристаллической пластинкой:

$$I = I_0 (\delta/x)^2 \sin^2(xt/\delta\sigma).$$
(4)

ЭКСПЕРИМЕНТ

Клиновидный кристалл Si вырезался так, чтобы плоскость 111 была перпендикулярна поверхности образца И совпадала с направлением изменения его толщины. Острый край клина составлял 1мкм. Эксперимент рентгеновском генераторе проводился на "Microflex" с размером фокуса 10 мкм, ширина входной щели - 200 мкм, использовались отражения 111 и 333, излучение МоК_а. С целью спектральных аберраций устранения использовались расстояния $R_1 = R_2$. Суммарное расстояние $R=R_1+R_2$ составляло 51 см. При этих параметрах величины δ и σ равнялись: $\delta = 6$ мкм, $\sigma_{111} = 26.6$ мкм, $\sigma_{333} = 8.9$ мкм. Экстинкционная глубина т для отражения 111 составляла 41.5 мкм, а для 333 - 71.7 мкм.

Рис.2. Экспериментальное и теоретическое изображение тонкого клиновидного кристалла $Si(111), MoK_{\alpha l}$

На рис.2 представлено изображение клиновидной пластинки *Si*(111). На топограмме слева и справа от центра изображения вне геометрического изображения палатки Бормана отчетливо видны 4 фраунгоферовские полосы гиперболической формы. При уменьшении размера входной щели эти полосы исчезают.

Интенсивность полос убывает как $1/x^2$, поэтому все изображение имеет одинаковую

ширину. Картине Фраунгофера соответствует область $t < \sigma$, с $t \ge \sigma$ начинается область дифракции Френеля. Она характеризуется тем, что начинается формирование геометрического изображения палатки Бормана, минимумы между полосами становятся больше 0, а сами полосы начинают втягиваться в геометрическое изображение палатки Бормана.

Согласно (4) серия интерференционных полос вне геометрического изображения палатки Бормана имеет гиперболическую форму и описывается выражением:

$$|x|t/\sigma\,\delta\approx(k+0.5),\tag{5}$$

где k - целое положительное число. Поскольку (4) убывающая функция, максимумы сдвинуты к меньшим x. Для k = 1..4 поправки к величине 0.5 составляют: -0.07, -0.04, -0.03, -0.02.

Наблюдаемые полосы Фраунгофера отличаются от полос аномального маятникового эффекта. Они наблюдаются разных в экспериментальных диапазонах. Полосы Фраунгофера могут использоваться для определения локальной толщины кристаллических пленок, а изображения в области дифракции Френеля имеют очень чувствительность к искажениям высокую кристаллической решетки.

Работа поддержана грантом РФФИ № 06-02-17406.

- 1. Laue M., Fridrich W., Knipping P. // Ann Phys. 1913. V. 41. P. 971.
- 2. Darvin C. G. // Phil. Mag. 1914. V. 27. P. 315. P. 675.
- 3. Ewald P.P. // Fnn. Phys. 1917. V. 54. P. 332.
- 4. *Kato N., Lang A.R.* // Acta Cryst. 1959. V. 12. P. 787.
- 5. *Kato N. //* Acta Cryst. 1961. V. 14. P. 526, P. 627.
- 6. Афанасьев А.М., Кон В.Г. // ФТТ. 1977. Т. 19. С. 1775.
- Аристов В.В., Половинкина В.И., Шмытько И.М., Шулаков Е.В. // Письма в ЖЭТФ. 1978. Т. 28. С. 6.
- 8. Aristov V.V., Polovinkina V.I., Afanas'ev A.M., Kohn V.G. // Acta Cryst. 1980. V. A36. P. 1002.
- 9. Shulakov E.V., Aristov V.V. // Acta Cryst. 1982. V. A38. P. 454.
- 10. Шулаков Е.В., Аристов В.В. // Кристаллография. 1988. Т. 33. С. 13.
- 11. Aristov V.V., Basov Yu.A., Nikulin A.Yu., Snigirev A.A. // Proc. III Topical Meeting on Shot Wavelength Coherent Radiation Monterey. 1986. P. 253.
- 12. Aristov V.V., Shulakov E.V. // Optics Comm. 1988. V. 65. P. 407.

Изготовление W/Si многослойного зеркала с латеральным градиентом периода

<u>Щелоков И.А.¹</u>, Кондаков А.С.¹, Субботин А.Н.²

 Институт проблем технологии микроэлектроники РАН, Черноголовка
 Российский Федеральный Ядерный Центр ВНИИЭФ, Саров e-mail: igor@ipmt-hpm.ac.ru

В последние годы усилился интерес к созданию многослойных зеркал с периодом, изменяющимся вдоль его длины. Такие зеркала, напыленные на различные криволинейные управлять поверхности, позволяют пространственной структурой и спектральным составом пучков рентгеновского излучения. В используемые частности, В качестве коллиматоров рентгеновского излучения на лабораторных источниках, они позволяют повысить светосилу приборов [1-4], что важно для проведения лабораторных исследований в схемах рентгеновской in-line голографии и флуоресцентной рентгеновской микроскопии и микротомографии.

Недавно, было предложено использовать градиентные многослойные зеркала в схеме широкодиапазонного рентгеновского спектрографа для получения обзорных спектров высокотемпературной плазмы. Для реализации этого проекта в ИПТМ РАН начались работы по разработке технологии создания многослойных зеркал с латеральным градиентом периода.

Модель процесса напыления градиентного зеркала.

Метод создания многослойных зеркал с латеральным градиентом периода определяется, первую очередь, конструкционными в особенностями используемой установки напыления. Как правило, выбирается такой метод, для реализации которого требуются минимальные модификации стандартного режима напыления. Во-первых, это позволяет использовать в работе параметры установки, определенные ранее при изготовлении простых многослойных зеркал, а во-вторых, это просто удобно. В этом смысле данная работа не исключение.

В установке магнетронного напыления ALCATEL SCM 650 поток атомов от мишени к направляется в горизонтальной подложке плоскости. Другая мишень расположена диаметрально противоположно. Соответственно этому, подложка может совершать только вращательное движение по окружности по отношению к падающему на нее потоку атомов при смене мишени. Поступательного движения подложки не предусмотрено. Наш метод напыления градиентного многослойного зеркала состоит в следующем: при помощи системы необходимого экранов размера В

рассматриваемом случае 70 мм, - формируется сколлимированный поток атомов на подложку; градиент периода создается за счет того, что при вращении держателя с подложкой ее край постепенно выводится из падающего потока атомов. Размер держателя и, соответственно, диаметр окружности, по которой перемещается подложка порядка 20 см. Поэтому при создании зеркал требуемых размеров (7 см) для полного вывода подложки из падающего потока необходимо поворачивать держатель на значительные углы (~ 40°). При этом градиент периода, получающийся при равномерном вращении подложки, будет нелинейным.

Рассмотрим простейшую модель данного процесса. Пусть держатель с подложкой размера $2x_0$ равномерно вращается со скоростью ω_0 в однородном, пространственно-ограниченном, сколлимированном потоке атомов (см. рис.1). Будем считать скорость роста *v* пленки при нормальном падении потока атомов на подложку заданной величиной.

Рис. 1. Схема расчета.

При повороте на угол φ точки подложки с координатой x

$$x = \frac{(-x_0 + R\sin\varphi)}{\cos\varphi} \tag{1}$$

находятся на границе падающего потока атомов. Отсюда легко определить максимальный угол, на который необходимо повернуть подложку, чтобы она оказалась за границей падающего потока атомов. Очевидно, что при этом в выражении (1) необходимо положить $x = x_0$ $x_0 \cos \varphi_{\max} = -x_0 + R \sin \varphi_{\max}$

$$\frac{x_0}{R} = \frac{\sin\varphi_{\max}}{(1+\cos\varphi_{\max})} = \frac{2\sin\frac{\varphi_{\max}}{2}\cos\frac{\varphi_{\max}}{2}}{2\cos^2\frac{\varphi_{\max}}{2}} = tg\frac{\varphi_{\max}}{2}$$

 \Rightarrow

Зависимость (1) граничной координаты подложки x от угла поворота φ показывает, что данная точка поверхности зеркала вышла за границу падающего потока и, поэтому, дальнейшего роста пленки происходить не будет. Графически она представлена на рис. 2.

Рис. 2. Зависимость координаты х подложки на границе падающего потока атомов от угла поворота держателя.

Если подложка повернута на угол φ относительно падающего потока, то на ее поверхности за время dt образуется пленка толщиной

$$dz = v\cos\varphi dt$$

За конечное время t, при котором подложка поворачивается на угол φ , толщина пленки составит

$$z(x) = \int_{0}^{t} v \cos \varphi dt = \left[\omega_{0} = \frac{d\varphi}{dt}\right] = \int_{0}^{\varphi(x)} v \cos \varphi \frac{d\varphi}{\omega_{0}} =$$

$$= \frac{v}{\omega_{0}} \sin \varphi(x)$$
(2)

При использовании выражения (1) лля определения зависимости $\varphi(x)$ в (2) мы получим значение толщины пленки, которая выросла в точке х поверхности за время поворота подложки на угол φ . Так как при дальнейшем повороте подложки роста пленки в данной точке поверхности не происходит, то эта зависимость является искомой. Разрешая (1) sinø можно выписать относительно зависимость толщины пленки от координаты подложки в явном виде:

$$z(x) = \begin{cases} \frac{z_{\max}}{\varphi_{\max}} \frac{Rx_0 - x\sqrt{R^2 + x^2 - x_0^2}}{(R^2 + x^2)} , & x < 0\\ \frac{z_{\max}}{\varphi_{\max}} \frac{Rx_0 + x\sqrt{R^2 + x^2 - x_0^2}}{(R^2 + x^2)} , & x > 0 \end{cases}$$
(3)

Здесь использованы следующие обозначения:

$$\omega_0 = \varphi_{\max} / t$$
 , $z_{\max} = vt$

где *t* время необходимое, чтобы на поверхности подложки выросла пленка толщиной *z*_{max} при нормальном падении потока атомов мишени.

Итоговое распределение периода запишется в виде:

$$d(x) = d_0 + z(x) \tag{4}$$

Полученное распределение периода по длине зеркала в сравнении с рассчитанным по (3), (4) представлено на рис. 3. Для расчета использовались параметры: R = 115 мм, $x_0 = 35$ мм, $\varphi_{\text{max}} = 33.85^\circ$, $d_0 = 35$ Å, $z_{\text{max}} = 35$ Å.

Рис. 3. Распределение периода по длине зеркала.

Описание экспериментальной части работы, касающееся измерений периода градиентного зеркала, будет представлена на стенде во время проведения симпозиума.

В заключение можно отметить, что в рамках данного метода возможен только единственный способ получения заданного градиента периода - это модулирование скорости вращения подложки. Действительно, как следует из (2), при модуляции скорости вращения по закону $\omega = \omega_0 \cos \varphi$, получающийся градиент будет практически линейным (с точностью до результатов рис.2). В общем же случае, с помощью выбора соответствующего закона модуляции можно создавать заданное одномерное будет распределение периода.

Работа поддержана грантами РФФИ № 05-02-16785 и № 06-02-16117.

- Shuster M., Gobel H. J.Phys.D: Appl.Phys. 28, 1995, A270.
- [2] Ахсахалян А.Д., Володин Б.А., Клюенков Е.Б., Муравьев В.А., Салащенко Н.Н., Харитонов А.И. Поверхность, т.1, 1999, с.162
- [3] Ахсахалян А.А., Ахсахалян А.Д., Волгунов Д.Г., Гапонов С.В., Короткова Н.А., Мазо Л.А., Миронов В.Л., Салащенко Н.Н., Харитонов А.И. Материалы "Рентгеновская оптика - 2002", Н.Новгород, 2002, с.161
- [4] Protopopov V.V. Proc SPIE 4144, 2000, p.116

Сканирующая рентгенофлуоресцентная микроскопия на лабораторном источнике: задачи и теоретические оценки.

М.В. Чукалина¹, <u>И.А. Щелоков¹</u>, Д.П. Николаев²

¹Институт проблем технологии микрэлектроники РАН, Черноголовка, Россия. ²Институт проблем передачи иформации, пер. Б. Каретный, д.19, Москва, Россия. e-mail: <u>chukalinamarina@mail.ru</u>

1. Введение

Рентгеновская флуоресцентная сканирующая микроскопия, по своему пространственному разрешению, занимает промежуточное положение между оптической и электронной микроскопией. Вместе с тем, она преимуществ имеет ряд перед другими методами исследования. локальными с Преимущества связаны физикой взаимодействия рентгеновского излучения с веществом. Уникальная особенность метода состоит в том, что по результатам измерений возможна реконструкция не только пространственного распределения электронной плотности, но и извлечение количественной информации 0 распределении отдельных элементов.

Однако пор. применение ло сих флуоресцентной рентгеновской высокоразрешающей сканирующей микроскопии лабораторных условиях ограничено. в ограничениями Основными являются трудоемкость процедуры фокусировки И достижение интенсивности необходимой для проведения измерений, в фокальном пятне микронных размеров.

B данной работе сформулированы создателями задачи, стоящие перед лабораторного рентгеновского флуоресцентного сканирующего микроскопа на базе оптической схемы Киркпатрика-Баеза. Получено выражение для оценки чувствительности метода, которое связывает вариацию сигнала с вариацией формы зонда и концентрации. Предложен алгоритм для распределения восстановления молярной концентрации элемента (молярности) из карты рентгеновских флуоресцентных сигналов.

2. Оптическая схема и форма зонда

Идея использования двух линейных элементов в геометрии Киркпатрика-Байеза [1] на лабораторном источнике была экспериментально исследована в работе [2]. Фазовые френелевские зонные пластинки скользящего падения [3-5] были использованы для фокусировки излучения СиК_а рентгеновского лабораторного источника с вращающимся анодом. Результаты фокусировки представлены на рис.1. Как видно на рисунке, распределение интенсивности в фокальной плоскости может быть аппроксимировано крестом, плечи которого разную толщину. Величину имеют интенсивности вдоль плеча можно считать постоянной. Интенсивность в горизонтальных и вертикальных плечах отличается примерно на порядок от интенсивности в центре [2]. Данная модель зонда будет использована в дальнейших рассуждениях. Обратим внимание, что абсолютная величина интенсивности пока не обсуждается.

I.A. Schelokov et al. / Optics Communications 155 (1998) 115-124

Рис.1. Экспериментальные результаты по двумерной фокусировке рентгеновского излучения лабораторного источника.

2. Модель формирования рентгенофлуоресцентного сигнала

Пусть толщина исследуемого объекта *d* соизмерима с наименьшей длиной ослабления среди измеряемых флуоресцентных линий и объект однороден по толщине. Тогда ослаблением флуоресцентного излучения внутри объекта можно пренебречь. И выражение, которое связывает величину регистрируемого сигнала *I* энергии E_x , для положения центра зонда микроскопа (x_0, y_0) , с функций распределения молярной концентрации элемента $C_{\mu}(x, y)$ может быть записано в виде:

$$I_{E_{0}}(x_{0}, y_{0}) = \omega_{E_{0}} \mu_{E_{x}} \frac{d}{S} \times$$

$$\iint C_{m}(x, y) F(x - x_{0}, y - y_{0}) dx dy$$
(1)

Здесь выход флуоресценции для ω_{E_0} флуоресцентной линии энергии E_0 [6], μ_{E_0} ослабления линейный коэффициент рентгеновского излучения Е_x долей элемента, регистрируется, F(x, y)которого линия описывающая функция, распределение интенсивности в зонде. Задача формирования рентгеновского сигнала для случая бесконечнотонкого зонда детально рассмотрена в работе [7].

4. Решение обратной задачи

Процедура сканирования организована перемещением центра зонда по поверхности образца. После сканирования всей поверхности образца будет зарегистрирована карта сигналов. Данная карта является основой для решения обратной задачи - восстановления распределения молярной концентрации элемента.

Для решения обратной задачи предлагается использовать алгебраический метод, разработанный Гордоном [8] для решения задачи компьютерной томографии. Покроем пространство изображения сетью $N \times N$ пикселов. Выберем размер пиксела, например, равный размеру центральной части зонда. Обратим внимание, что шаг сканирования может быть больше или меньше размера пиксела. Для выбранного метода приемлемы восстановления оба варианта. Перепишем уравнение (1) в виде алгебраической суммы

$$I_i = K \sum_j C_j F_{ij}$$
(2).

Здесь *К* - используемые в уравнении постоянные, *i* - пиксел, в которй помещен центр зонда. Суммирование ведется по всем пикселам изображения. Число уравнений может быть равно числу пикселов или числу шагов сканирования. Это зависит от конкретной реализации алгоритма.

Итерационная процедура реконструкции может быть представлена следующим образом:

$$C_{i}^{k} = C_{i}^{k-1} + \frac{I_{i} - \sum_{j} C_{j}^{k-1} F_{ij} w_{ij}}{\sum_{j} w_{ij}^{2}}$$
(3).

Здесь k - номер итерации, w_{ij} - вклад j пиксела в сигнал, если центр зонда помещен в пиксел i. Значение w_{ij} отличается от 1 в тех случаях, когда шаг сканирования не совпадает с размером пиксела [9].

5. К вопросу чувствительности метода

Для того, чтобы восстановить распределение молярной концентрации, необходимо зарегистрировать контраст на карте сигналов. Т.е. следует ответить на вопрос, каким должно быть распределение интенсивности в зонде ("в кресте" рис.1), чтобы при перемещении от пиксела с концентрацией элемента C (положение зонда 1) к пикселу с концентрацией $C + \Delta$ (положение зонда 2), разница в сигналах могла бы быть зарегистрирована и составляла δ . Допустим, что пиксел с концентрацией C при положении зонда 2 оказывается накрыт плечом креста.

Пусть I_0 - интенсивность в центральной части (перекрестье) зонда, тогда $x \times I_0$ интенсивность в плечах креста. Предположим, что в горизонтальном и вертикальном плечах интенсивность одинакова и равномерно распределена вдоль них. Величина шума много меньше, чем $x \times I_0$ и в построении оценки ею пренебрегается.

Пусть толщина плеча составляет один пиксел. Тогда величина сигнала для положения 1:

$$S + \delta = K (I_0 (C + \Delta)) + 2(N - 1) x I_0 C$$
(4),
для положения 2:

 $S = KI_0 C + 2(N-1)xI_0 C + xI_0 \Delta$ (5).

Вычитая выражение (5) из (4) придем к выражению

$$\delta = KI_0 \Delta(1 - x), \tag{6}$$

которое связывает вариацию сигнала с вариацией формы зонда и концентрации.

T.e. зафиксировав значения ошибкой δ (определяется регистрирующей аппаратуры) и Δ (определяется составом исследуемого образца), легко рассчитать требования, которые должны быть предъявлены системе фокусировки, требуемое к т.е. соотношение интенсивностей в центре зонда и его плечах.

Работа выполнена при частичной финансовой поддержке РФФИ 06-02-16117-а, 05-02-08112.

- [1] P. Kirkpatrik, A. Baez. J. Opt. Soc. Am 38, 1948, p. 766.
- [2] I.A. Schelokov, D.V. Roschupkin, A.S. Kondakov, A.E. Yakshin, R. Tucoulou, M. Brunel. Optics Commun. 155, 1998, p.115.
- [3] Yu.A. Basov, D.V. Roshupkin, A.E. Yakshin. Optics Comm. 109, 1994, p.324.
- [4] Yu.A. Basov, D.V. Roshupkin, I.A. Schelokov, A.E. Yakshin. 114, 1995, p.9.
- [5] I.A. Schelokov, Yu.A. Basov. J. Phys. D 29, 1996, p.129.
- [6] E.P. Bertin. Principles and Practice of Z-Ray Spectrometric Analysis. Plenum Press, New York, 1975.
- [7] M.V. Chukalina, N.G. Ushakov, S.I. Zaitsev. Scan. Microscopy 11(2), 1997, p. 311.
- [8] R. Gordon, R. Bender, G.T. Herman. J. *Theor. Biol.* 29(3), 1970, p.471.

Воздействие факторов космического полета на характеристики оптических элементов солнечных ВУФ-телескопов

<u>В.А. Слемзин¹</u>, А.В. Митрофанов¹, О.Л. Бугаенко¹, С.В. Кузин¹, А.А. Перцов¹, Н.Н. Салащенко², С.Ю. Зуев²

¹ Физический институт им. П.Н. Лебедева РАН, г. Москва ² Институт физики микроструктур РАН, г. Нижний Новгород

Успешное выполнение наблюдательных задач внеатмосферной астрономии зависит от стабильности характеристик оптических элементов бортовых телескопов при длительном воздействии факторов космического полета. Наиболее чувствительными к внешним воздействиям элементами ВУФ-телескопов являются зеркала с многослойными покрытиями, тонкопленочные фильтры, детекторы изображений.

В течение 4,5 лет, с августа 2001 по декабрь 2005 г., на спутнике КОРОНАС-Ф выполнялся эксперимент СПИРИТ по исследованию Солнца с помощью телескопов и спектрогелиографов в участках спектра 171, 175, 195, 284 и 304 Å [1]. Начальная орбита спутника имела высоту 500 км, наклонение 82.5⁰, период обращения 92,5 мин (теневая и освещенная части по 46-47 мин). В состав комплекса СПИРИТ входили два телескопа. В 4-канальном телескопе по двух-Ричи-Кретьена зеркальной схеме (T1)использовались зеркала с многослойным покрытием, изготовленные во Франции [2] (Институт оптики, Орсэ). В двухканальном телескопе Гершеля были установлены внеосевые параболические зеркала, изготовленные в ИФМ РАН [3]. В обоих телескопах использовались изготовленные в ФИАНе тонкопленочные Alфильтры [4,5] и детекторы изображений с усилителями на основе открытых микроканальных пластин (МКП) и ПЗС. Рассмотрим влияние факторов космического полета на характеристики телескопов СПИРИТ.

1. Циклическое изменение освещенности и температуры

Вследствие прецессии орбиты спутника периодически изменяется соотношение теневой и освещенной частей орбиты, в результате чего происходят циклические вариации температуры, которые могут приводить к возникновению механических напряжений и повреждению тонкопленочных фильтров, а также к отслоению покрытия многослойных зеркал. Влияние фактора изменения температуры пропорционально числу циклов, т.е. общей длительности полета.

Орбита спутника КОРОНАС каждые 90 дней на 2-3 недели становилась полностью бестеневой, вследствие чего температура на уровне входных отверстий телескопов поднималась с 15-20 до 40-45⁰ С (рис. 1). Развитие напряжений при циклическом повышении температуры явилось возможной причиной разрыва фильтра детектора канала T2-304 9 февраля 2003 г. (рис. 2). Фильтр представлял собой подложку из пористого майлара толщиной 8,6 микрон с нанесенным на нее слоем А1 толщиной 0,15 мкм.

Рис. 1. А) Циклическое повышение температуры вследствие прецессии оси орбиты спутника.
Б). Минимальная высота луча зрения по отношению к горизонту для орбит КОРОНАС-Ф.
Стрелкой отмечен момент появления трещины в фильтре канала T2-304.

Рис. 2. Появление трещины в фильтре детектора 9 февраля 2003 г. вследствие развития напряжений при циклическом повышении температуры.

2. Изменение чувствительности детекторов

Коэффициенты преобразования детекторов в течение полета могут уменьшаться вследствие выработки ресурса, причем выгорание происходит в местах наибольшей яркости изображения (это заметно в ЕІТ и отсутствует в СПИРИТе). Выработка ресурса детекторов СПИРИТ в полете составила не более 10-15%, при этом средние коэффициенты усиления сохранялись в пределах 1%.

3. Уменьшение общей чувствительности прибора вследствие контаминации поверхностей зеркал и фильтров

Газовая среда вокруг спутника образуется в результате испарения или возгонки конструкционных материалов или адсорбированных на поверхностях веществ (гидрокарбонаты вида $C_xH_yO_z$, кремний-органика и др.) и набегающего потока газов атмосферы, в основном, атомарного кислорода. В присутствии жесткого излучения Солнца адсорбированные слои контаминантов на поверхности зеркал и фильтров полимеризуются, при этом их поглощение растет пропорционально времени экспонирования. Пропускание Al-фильтров уменьшается вследствие роста толщины слоя Al_2O_3 .

Сравнение значений интеграла полного потока солнечного ВУФ-излучения по данным спектральных каналов СПИРИТ с калиброванными значениями по данным аналогичных каналов телескопа ЕІТ международной обсерватории SOHO [7] показало, что в течение полета чувствительность каналов телескопов СПИРИТ, особенно Т1, заметно уменьшилась (см. табл. 1). На рис. 3 в качестве примера показано отношение сигналов полного потока ВУФизлучения (в логарифмическом масштабе) в канале Т1-304 СПИРИТ и калиброванных данных ЕІТ.

Таблица 1. Изменения значений интеграла полного потока ВУФ-излучения Солнца в каналах СПИРИТ, нормированных на калиброванные значения ЕІТ, в период с 15 августа 2001 г. по 31 августа 2003г.

Канал	Канал	СПИРИТ/ЕІТ	Суммарное
СПИРИТ	EIT	(август 2003/	время
		август 2001)	эксп. (ч)
T1-171	171	0,173	728
T1-195	195	0,013	7382
T1-284	284	0,162	1364
T1-304	304	0,0339	943
T2-175	195	1,00	8760
T2-304	304	0,391	8760

Повторные испытания контрольных образцов зеркал T2 показали, что их характеристики практически не изменились. Это соответствует ранее полученному результату [6] о том, что изготовленные в ИФМ РАН многослойные зеркала с покрытием Mo-Si при хранении в обычных лабораторных условиях стабильны в течение 4-8 лет. Пропускание Al-фильтров в длине волны 304 Å при хранении на воздухе в течение года уменьшилось не более чем на 20-25% вследствие роста пленки Al₂O₃ на величину порядка 50 Å [5].

Можно предположить, что одной из основных причин снижения чувствительности телескопа T1 и канала T2-304 является контаминация поверхностей зеркал и фильтров. Это подтверждается тем, что логарифм снижения чувствительности в разных каналах практически линейно зависит от времени экспонирования (рис. 4). Более сильное снижение в случае зеркал T1 по сравнению с T2, возможно, связано с деградацией покрытия зеркал.

дни полета

Рис. 3. Отношение интегралов полного потока солнечного излучения в каналах 304 Å телескопов СПИРИТ и ЕІТ (сплошная линия) и тренд изменения чувствительности телескопа СПИРИТ (пунктир) в функции от времени (дни полета). Периодические вариации связаны с температурными циклами.

Рис. 4. Зависимость снижения чувствительности каналов T1-195 т T1-304 от суммарного времени экспонирования

Работа выполнена при частичной финансовой поддержке РФФИ, проект № 05-02-17415.

Литература

- 1. I.A. Zhitnik, O.I. Bougaenko, J.-P. Delaboudiniere et al. ESA SP-506 "Solar Variability: from Core to Outer Frontiers". 2002. P.915-919.
- 2. Moses D., Clette F. Delaboudiniere J.-P. et al. Solar Physics, v.175, p.571–599, 1997.
- 3. С.С. Андреев, С.Ю. Зуев, В.А. Слемзин и др. Поверхность, , №1, с.6-11, 2003.
- 4. Mitrofanov A.V., Pudonin F.A., Starodubzev N. et al. Proc. SPIE, v.3406, p.35-44, 1998.
- 5. А.В. Митрофанов, С.Ю. Зуев. Известия АН, т.68, №4, с.556-559
- 6. В.А. Слемзин, И.А. Житник, С.Ю. Зуев и др. Поверхность, №1, с. 84-86, 2002.
- 7. В.А. Слемзин, С.В. Кузин, И.А. Житник и др. Астрономический Вестник, т. 39, №6, с. 1-12, 2005.

Особенности перехода от слабой локализации к режиму квантового эффекта Холла в 2D-структурах GaAs/n-InGaAs/GaAs с двойными квантовыми ямами

<u>Ю. Г. Арапов¹</u>, С.В.Гудина¹, В. Н. Неверов^{1,2}, Г. И. Харус¹, Н. Г. Шелушинина¹, М.В.Якунин¹, С.М.Подгорных¹, Б.Н.Звонков², Е.А.Ускова²

¹⁾Институт физики металлов,620219, Екатеринбург, ул.С.Ковалевской,18. ²⁾НИФТИ, НГУ, 603600, Нижний Новгород, пр. Гагарина, 23, корп.3. e-mail:arapov@imp.uran.ru

Введение. В магнитном поле плотность состояний 2D-электронного газа (2DEG) представляет собой последовательность делокализованных (критических) состояний в центре уровней Ландау и локализованных - между уровнями. При изменении магнитного поля наблюдаются квантовые фазовые переходы (КФП) между этими состояниями. Экспериментальные результаты в сильных полях ($\omega_c \tau >> 1$) каксогласуются теоретическими то с предсказаниями. Однако КФП в слабых магнитных полях ($\omega_c \tau \leq 1$) вот уже много лет является предметом острых дискуссий. Это связано с тем, что при ∞_ст≤1 КФП магнитополевыми маскируется и температурными зависимостями квантовых поправок к продольной и холловской проводимости от слабой локализации (СЛ) И эффектов электрон-электронного взаимодействия (ЭЭВ)[1]. В последнее время как теоретически [2-4], так и экспериментально[5-8] (см. также ссылки в [8]), показано, что эти зависимости в различных 2D-структурах В широком интервале температур (в диффузионном $(k_BT\tau_e/h \le 1)$ и баллисти-ческом $(k_BT\tau_e/h \ge 1)$ режимах) и концентраций носителей заряда И $n_{s}>n_{c}$ гле n_c-критическая $(n_{s} < n_{c})$ концентрация перехода «металл»-«диэлектрик» в нулевом магнитном поле) обладают целым рядом особенностей. И, следствие, анализировать как КΦП «изолятор»(B=0)-квантово-холловская жидкость (I-QHL) без учета особенностей температурных и магнитополевых зависимостей квантовых поправок нельзя.

Экспериментальные результаты и их обсуждение. Мы исследовали образцы n-InGaAs/GaAs с двойными квантовыми ямами с концентрацией электронов $n_s=2.27.10^{11}$ см⁻² (концентрация электронов $n_s>n_c$, что соответствует «металлической»

стороне перехода металл-диэлектрик в нулевом магнитном поле) и подвижностью µ_n=0.8.10³см²/Вс. Были измерены р_{хх}(В,Т) и р_{ху}(B,T), при 1.8<T<77К и 0<B<9.0Т. Параметр k_BTт/ћ=0.1÷3.0 (баллистический режим). На рис.1 видно, что осцилляции Шубникова-де Гааза фактором (c заполнения v=10) начинаются с полей $B_1 \approx 0.75T \ (\omega_c \tau \le 1), \ \rho_{xx}(B,T) = \rho_{xy}(B,T) \ (\omega_c \tau = 1)$ в полях B₂=0.89Т, а в поле B₃≈1.6Т (ω_cτ>1) на $\rho_{xx}(B,T)$ наблюдается, так называемая, температурно-независимая Т_{ind}-точка. При T>8К эта точка начинает размываться.

Однако хорошо известно, что в этом интервале магнитных полей при В=Вкр должен наблюдаться квантовый фазовый переход «изолятор» (B=0)-квантово-холловская жидкость (I-QHL). В этом же поле должна быть и Т_{іпд}-точка.. При этом в поле B_{kp} должно быть $\rho_{xx}(B,T) = \rho_{xy}(B,T)$, т.е. картина $\omega_c \tau = 1$. Аналогичная должна наблюдаться и в следующем случае: предсказание теории квантовых поправок об отсутствии поправок в σ_{xy} от е-е взаимо- $(\Delta \sigma^{ee}_{xv} = 0)$ диффузионном действия В режиме при инвертировании тензора проводимости в тензор сопротивления приводит к тому, что в компоненте тензора

 $\rho_{xx}(B,T)$ появляется множитель [1-($\omega_c \tau$)²]. И, следствие, магнитном поле, как В соотвествующем $\omega_c \tau = 1$, сопротивление перестает зависеть от температуры (появляется T_{ind} -точка). Сопротивление в этом поле кстати равно друдевскому, что и позволяет определить σ_D . Такое сильное отличие наблюдаемой картины (рис.1) от ожидаемой как в случае КФП, так и в случае появления множителя $[1-(\omega_c \tau)^2]$ мы связываем с наличием $\sigma_{xy}(B,T)$ (см. рис.2).

Появление $\sigma_{xy}(B,T)$ можно объяснить только температурной зависимостью подвижности $\mu(T)$, ($\tau(T)$) при переходе от диффузионного режима к баллистическому при Т>8К, где требование об отсутствии вклада в σ_{xy} ЭЭВ отсутствует[3-8]. При инвертировании σ_{xx} и σ_{xy} в ρ_{xx} и ρ_{xy} в компоненте р_{хх} исчезнет множитель [1- $(\omega_c \tau)^2$] и , следовательно, исчезнет T_{ind} точка, вернее она начнет размываться. Аналогичное объяснение для 2D-структур n-GaAs/AlGaAs предлагается и в [5,8]. Если теперь из экспериментальных $\sigma_{xy}(B,T)$ вычесть $\sigma_{\rm D}(T)$ И с этими, vже модифицированной $\sigma_{xy}^{*}(B,T)$ и $\sigma_{xx}(B,T)$, найти снова ρ_{xx} *(B,T) и ρ_{xy} *(B,T), то на этих зависимостях уже не будет выше перечисленных особенностей в области T_{ind}. точки и ω_сτ=1(см.рис.3)[5,7].

Также как и для структур p-Ge/Ge_{1-x}Si_x, нам не удалось смасштабировать все даже модифицированные зависимости ρ_{xx} *(B,T) с одним и тем же критическим индексом κ =0.43. Мы считаем, что и для структур GaAs/n-InGaAs/GaAs с двойными квантовыми ямами наблюдаемая на эксперименте температурно-независимая точка в (T_{ind}. точка), в которой пересекаются все кривые $\rho_{xx}^*(B)$ в поле $B_c \sim 0.9T$ для различных

температур в диапазоне 0.3 ≤ T ≤ 12К, связана не с переходом изолятор –квантовохолловская жидкость (как принято считать), а с совместным действием классического циклотронного движения и ЭЭВ в диффузионном канале.

Выводы. При анализе КФП «изолятор» (B=0) – квантово-холловская жидкость (I-QHL) необходимо учитывать особенности температурных и магнитополевых зависимостей квантовых поправок, особенно в $\sigma_{xy}(B,T)$.

Работа поддержана РФФИ: гранты №04-02-16614 и №05-02-16206, программа Президиума РАН "Низкоразмерные квантовые гетероструктуры", грант УрО РАН для молодых ученых и Фондом содействия отечественной науке.

[1] Huckestein B., Phys. Rev. Lett., 84, 314 (2000).

[2] Das Sarma S.etal.,Phys.Rev.Lett.**83**,164 (1999); Phys.Rev.B. **61**,R7838 (2000).

[3] Gornyi I.V. et al. Phys. Rev. B. **69**, 045313 (2004)

[4]Zala G et al., Phys. Rev. B **64**, 214204 (2001); *ibid.* **65**, R0220(2002).

[5]Minkov G. et al., Phys. Rev. B **64**, 235327 (2001);

[6]Арапов Ю.Г. и др., Мат. Симп. «Нанофизика и наноэлектроника' 2005», с.336-337.

[7] Arapov Yu.G. et al., Proc. of 13th Int. Symp. "Nanostructures: Physics and Technology", 2005, p.403-404.

[8]Renard V.T. et al., Phys. Rev. B 73, 075313 (2005).

Микрозеркала на основе двумерных периодических структур из метало-диэлектрических трубок

М.Ю.Барабаненков, В.В.Старков, Е.Ю.Гаврилин

Институт проблем технологии микроэлектроники и особочистых материалов РАН, ул.Институтская 6, Московская обл., г.Черноголовка, Россия. e-mail: barab@ipmt-hpm.ac.ru

Известно, что плоский слой со свойствами двумерных (2D) фотонных структур (ФС) может быть образован однородными по сечению стержнями, окруженными, например, воздухом, или представлять собой слой диэлектрика с воздушными или заполненными порами. Оба типа ФС имеют преимущества и недостатки. В частности, фотонная запрещенная зона (ФЗЗ) в спектре системы диэлектрических стержней устойчива по отношению к деформации их формы. С другой стороны, максимальная (в Ф33 в теории) ширина $(\Delta \omega)$ спектре прохождения системы регулярных пор ($\Delta\omega/\omega^* =$ 0.35, где ш* - частота середины ФЗЗ) превышает аналогичную величину в случае системы стержней (Δω/ω* = 0.25). При этом, слой пор, толщина которого равна длине образующей пор, в четыре раза тоньше слоя стержней.

Рисунок 1.

Теоретический [2] спектр отражения по мощности *TE* поляризованной волны от 20 рядов SiO₂ трубок (диэлектрическая проницаемость $\varepsilon_{12} = 1.96$), образующих квадратную решетку с периодом $\Lambda = 7.3$ мкм. Внешний и внутренний радиусы трубок равны $\rho_1 = 3.15$ и $\rho_2 = 2.15$ мкм, соответственно. Толщина стенки трубок $\rho_{12} = 1$ мкм. Пик А соответствует 16% отражения.

В серии работ (см., например, [1]) предложен метод формирования 2D ФС, состоящих из полых стержней (трубок) диоксида кремния, образующих, например, квадратную решетку. Упорядоченные системы трубок являются промежуточной конструкцией между стержневыми и пористыми ФС и могут наследовать их лучшие свойства. Кроме того, оптические свойства пористых ФС могут быть изменены посредством заполнения объема пор или покрытия поверхности пор подходящим веществом. В частности, поры могут быть заполнены металлом.

Целью данной работы является исследование возможности изготовления микрозеркал на основе 2D периодических структур, состоящих из металлизированных трубок диоксида кремния.

Моделирование оптических свойств систем полых стержней, упакованных в квадратную решетку, проведено на основе решения уравнения Риккати [2], записанного для матричного коэффициента отражения плоской монохроматической электромагнитной волны дискретной периодической 2D системой рассеивателей.

Теоретический спектр отражения от 20 рядов SiO₂ трубок, внутренняя поверхность которых покрыта слоем Ag ($\varepsilon_{23} = -46.61 + i \times 2.623$). Толщины диэлектрической и металлической стенок трубок равны $\rho_{12} = 1$ и $\rho_{23} = 0.1$ мкм, соответственно. Плато вблизи пика A соответствует 88% отражения.

Показано, что регулярная система тонкостенных трубок диоксида кремния проявляет свойства слабых ФС, т.е. почти прозрачна в среднем ИК диапазоне (см. Рис.1; пик А соответствует 16% отражения). Появление практически значимой ФЗЗ можно ожидать только при значительном утолщении стенок трубок. Однако, металлизация внутренней поверхности трубок (например, слоем серебра) обуславливает существенную трансформацию спектров отражения структур. При толщине слоя Аg, порядка глубины скин слоя, происходит

некоторое "просветление" структуры, т.е. коэффициента уменьшение отражения в диапазоне длин волн λ > 10 мкм. По мере утолщения слоя Ад эффективность отражения возрастает в результате все более существенного вклада в процесс отражения действительной и отрицательной по величине части диэлектрической проницаемости Ag. При толщине слоя Ад, составляющей 10% от диэлектрической стенки трубок, толшины метало-диэлектрическая (МД) структура может функционировать в качестве разделителя пучков, отражающего 20% падающего излучения с длиной волны более 17 мкм (см. Рис.2).

Рисунок 3.

Теоретический [2] спектр отражения *TE* поляризованной волны от одного ряда Ag стержней в SiO₂ оболочке: $\rho_1 = 3.15$ мкм, $\rho_2 = 2.15$ мкм, $\rho_{12} = 1$ мкм, $\rho_{23} = 2.15$ мкм. На вставке показано смещение по длине волны эффективности отражения от одного ряда метало-диэлектрических трубок, соответствующей величинам 95 (кривая 1), 96 (2) и 97% (3), по мере утолщения слоя Ag. Значки (•, \blacktriangle , \checkmark) иллюстрируют соответствие значений на вставке спектру отражения.

При толщине слоя Ад, порядка или более толщины SiO₂ стенки, уже один ряд МД стержней является ИК зеркалом с эффективностью отражения 0.95, 0.96 и 0.97 для длин волн, больших 7.6, 8.1 и 9.6 мкм, соответственно. Причем, утолщение слоя Ag обуславливает "красное" смещение края эффективного отражения. Предельный случай полного заполнения диэлектрических трубок металлом показан на рис.3, на примере спектра отражения от одного ряда МД стержней.

Для сравнения приведем данные работы [3], где сообщается, что 95% отражения достигается при толщине сплошной пленки Au, равной 0.08 мкм. Аналогичная величина отражения от одного ряда МД трубок, рассмотренных в настоящей работе, достигается при толщине Au стенки трубок порядка 0.05 мкм (0.1 мкм на один ряд трубок). Отметим, что использование Au (вместо Ag) в качестве металлизации диэлектрических трубок приводит к уменьшению эффективности отражения ИК излучения из среднего диапазона длин волн, вследствие большего поглощения излучения в Au (см. рис.4).

Рисунок 4.

Эффективность отражения *TE* поляризованной волны (длина волны 9.6 мкм) от одного ряда метало-диэлектрических SiO₂ /Ag (кривые 1, 1') и SiO₂ /Au (кривые 2, 2') трубок в зависимости от толщины металлического слоя ρ_{23} при фиксированной толщине ($\rho_{12} = 1$ мкм, $\rho_1 = 3.15$ мкм, $\rho_2 = 2.15$ мкм) слоя SiO₂. Кривые 1 и 2 отображают результаты расчетов при $\varepsilon_{23}(Ag) = -46.61 + i \times 2.623$ (кривая 1) и ε_{23} (Au) = $-2875 + i \times 1186$ (кривая 2) [3]. Кривые 1' и 2' получены при $Im \varepsilon_{23}(Ag) = Im \varepsilon_{23}(Au) =$ 0.

Работа поддержана грантами научной программы РАН "Создание и исследование свойств новых типов фотонных кристаллов на базе полупроводниковых И магнитных материалов для развития оптоэлектронных элементов инфокоммуникационных сетей" и программы фундаментальных исследований Президиума РАН "Исследование проводимости углеродных нанотрубок на основе оптической резонансной дифракции на квазипериодическом ансамбле".

[1] Барабаненков М.Ю., Старков В.В., Шабельников Л.Г., Материалы Симпозиума "Нанофизика и наноэлектроника", Нижний Новгород, **2**, 310 (2005)

[2] Барабаненков Ю.Н., Барабаненков М.Ю., ЖЭТФ, **123**, 763 (2003).

[3] Page H., Collot P., De Rossi A., Ortiz V., Sirtori C., Semicond. Sci. Technol. **17**, 1312 (2002).

Метод "соотношений переноса" в исследовании резонансных оптических эффектов на периодических структурах

М.Ю.Барабаненков^{*}, Ю.Н.Барабаненков, С.А.Никитов

*Институт проблем технологии микроэлектроники и особочистых материалов РАН, ул.Институтская 6,

Московская обл., г.Черноголовка, Россия. e-mail: <u>barab@ipmt-hpm.ac.ru</u>

Институт радиотехники и электроники РАН, ул.Моховая 11, 103907 Москва, Россия

Обнаружение механизма управления электромагнитным (эм) излучением, принципиально отличного от механизма полного внутреннего отражения и основанного на явлении фотонной запрещенной зоны (ФЗЗ) – оптического аналога запрещенной зоны электронных состояний в полупроводниках, открыло принципиальную возможность интеграции оптических И электронных схем обработки информации в трехмерных системах микрофотоники [1]. Практическая разработка оптических элементов микрофотоники, основанных на дифракционных фотонных структурах решетках, (ΦC) И микрорезонаторах, поставила ряд новых задач. Среди них, проблема корректного описания оптических явлений на микросветоводах с модулированной поверхностью и/или резонансными объемными неоднородностями.

При теоретическом исследовании резонансных оптических эффектов на периодических поверхностях, либо на суперпозиции поверхности и объемных рассеивателей возникают два существенных затруднения: сильное взаимодействие дифрагированных волн, которое не может быть рассмотрено методами теории возмущений, обычно применяемыми в задачах поверхностного рассеяния, и отсутствие до недавнего времени единого подхода к рассмотрению рассеяния эм волн на поверхностных и объемных диэлектрических структурах.

Серьезной попыткой единообразного описания объемного и поверхностного рассеяния эм волн является метод матриц переноса [2], рассеивающая согласно которому среда виртуально расслаивается на систему слоев рассеивателей. При этом, рассеиватели представляются точечными и, поэтому, никогда не секутся при расслоении среды, а возможные корреляционные эффекты между рассеивателями из разных слоев не учитываются.

Новый точный подход "соотношений переноса" [3] к решению широкого круга задач рассеяния эм волн на некоторой неоднородной объемной среде вбирает в себя методологию подхода "трансфер матриц", но учитывает неизбежное рассечение рассеивателей при расслоении среды и корреляционные эффекты.

В докладе рассмотрено применение метода соотношений переноса к исследованию резонансных оптических эффектов на двумерных (2D) дифракционных решетках с произвольным достаточно гладким, возможно, многосвязным профилем сечения элементарного "гофра" решетки и 2D ФС. Расчет спектров отражения от дифракционных решеток проведен на основе выведенного из соотношений переноса уравнения Риккати, записанного для матричного волнового коэффициента отражения. Показано, что то же уравнение, но с измененными коэффициентами, применимо и в случае 2D ФС, представляемых в виде стопки дифракционных решеток. В случае непоглощающего материала решеток и ФС, спектры прохождения находятся на основе следствия теоремы Пойнтинга.

Количественно описаны два оптических явления: (i) т.н. "параллельные" аномалии на решетках, не связанные с возбуждением поверхностных плазмонов; (ii) зависимость глубины проникновения излучения в 2D ФС по мере увеличения числа её слоев и при условии, что частота излучения лежит в ФЗЗ. Частотный спектр прохождения по упорядоченной мощности системы 2D диэлектрических цилиндров интерпретирован на основе спектральной зависимости полного сечения рассеяния падающей эм волны уединенным цилиндром. Выявлены механизмы формирования зон блеска с частотно узкими всплесками прозрачности в одной из зон в спектрах прохождения ТЕ поляризованного эм излучения через 2D ФС с квадратной упаковкой диэлектрических стержней. Изучен вопрос о существовании зоны блеска при палении неоднородной волны на 2D ФС.

Работа поддержана грантами научных программ РАН "Создание и исследование свойств новых типов фотонных кристаллов на базе полупроводниковых и магнитных материалов для развития оптоэлектронных элементов инфокоммуникационных сетей" и "Пассивная многоканальная радио- и акустотермотомография человека в ближней зоне".

[1] L.C.Kimerling , "Silicon microphotonics", Appl. Surf. Sci., **159/160**, 8 (2000)

[2] C.Barnes, J.B.Pendry, "Multiple scattering of waves in random media: a transfer matrix approach", Proc. R. Soc. Lond. A, **435**, 185 (1991).
[3] Yu.N.Barabanenkov, V.L.Kouznetsov, M.Yu.Barabanenkov, "Transfer relations for electromagnetic wave scattering from periodic dielectric one-dimensional interface", in *Progress in Electromagnetic Research (PIER)*, ed. J.A.Kong (EMW Publishing, Cambridge MA, 1999), **24**, p.39
Влияние электрон-электронного взаимодействия на проводимость двумерного газа в полупроводниковых гетероструктурах

<u>А.В.Германенко</u>¹, О.Э.Рут¹, В.А.Ларионова¹, Г.М. Миньков^{1,2}, А.А.Шерстобитов^{1,2}, Б.Н.Звонков³

¹ГОУ ВПО Уральский государственный университет им. А.М.Горького, Екатеринбург, Россия ²Институт физики металлов УрО РАН, Екатеринбург, Россия

³НИФТИ, НГУ им. Н.И Лобачевского, Нижний Новгород, Россия

e-mail: <u>Alexander.Germanenko@usu.ru</u>

Электрон-электронное (е-е) взаимодействие в баллистическом и промежуточном режимах рассматривается в последнее время в качестве основной причины металлического поведения температурной зависимости проводимости, наблюдаемой в некоторых двумерных системах. Однако, несмотря на активное теоретическое исследования поправки от взаимодействия в этих режимах, практически отсутствуют экспериментальные исследования в простых структурах с изотропным, невырожденным спектром носителей тока, с относительно слабым e-e взаимодействием (r_s<3, где r_s - газовый параметр), слабым спин-орбитальным взаимодействием и небольшой величиной эффекта Зеемана.

В настоящей работе приводятся результаты подробного экспериментального исследования кинетических явлений в структурах с одиночной квантовой ямой AlGaAs/GaAs/AlGaAs (структура T1520) и GaAs/InGaAs/GaAs (структура 3510) с концентрацией электронов $n=(0.5-1.3)\cdot 10^{12}$ см⁻² и подвижностью (5-20)·10³ см²/В·с. Исследования проведены при температуре T от 0.4 до 10 K, когда параметр $T\tau$ менялся от 0.03 до 0.8, где τ время релаксации импульса. Исследовались образцы, имеющие форму холловских мостиков. Концентрация электронов в образцах, изготовленных из структуры Т1520, изменялась с помощью изменения напряжения на полевом электроде Vg, в образцах, изготовленных на основе структуры 3510, - путем засветки.

Типичные зависимости поперечной компоненты сопротивления от магнитного поля для одного из образцов структуры T1520 показаны на Рис. 1a,b. Хорошо видно параболическое отрицательное магнитосопротивление, вызванное влиянием взаимодействия.

Для описания влияния е-е взаимодействия на проводимость и эффект Холла в магнитном поле (включая классически сильные) использованы обобщенные результаты теории е-е взаимодействия [1,2]. Суть обобщения сводится к следующему. Квантовую поправку к проводимости системы, вызванную е-е взаимодействием, можно разделить на диффузионную ($\delta \sigma_{ee}^{d}$) и баллистическую ($\delta \sigma_{ee}^{b}$) части:

$$\delta \sigma_{ee}^{b} \simeq 2\pi G_0 T \tau \left(1 - \frac{3\tilde{F}_0^{\sigma}}{1 + \tilde{F}_0^{\sigma}} \right), \tag{1}$$

$$\delta \sigma_{ee}^{d} \simeq -G_0 \left[1 + 3 \left(1 - \frac{\ln\left(1 + F_0^{\sigma}\right)}{F_0^{\sigma}} \right) \right] \ln\left(\frac{1}{T\tau} + 1\right).$$
 (2)

Здесь $G_0 = e^2/\pi h$, F_0^{σ} , \tilde{F}_0^{σ} - ферми-жидкостные константы. В магнитном поле диффузионная часть поправки дает аддитивный вклад в диагональную компоненту тензора проводимости и нулевой вклад в недиагональную. Баллистическая поправка в основном перенормирует транспортное время релаксации импульса, то есть модифицирует обе компоненты. Таким образом,

$$\sigma_{xx} = \frac{en\mu'}{1+{\mu'}^2 B^2} + \delta\sigma_{ee}^d$$
(3)
$$\sigma_{xy} = \frac{en{\mu'}^2 B}{1+{\mu'}^2 B^2}, \ \mu' = \mu + \frac{\delta\sigma_{ee}^b}{en},$$

где $\mu = et/m$ – классическая подвижность электронов.

Рис. 1. а,b – Сопротивление, как функция магнитного поля для V_g =-3.7 В и -1 В, соответственно. с,d – температурная зависимость диффузионного и баллистического вкладов, соответственно. Символы – эксперимент, линии – расчет по формулам (1) и (2). Структура T1520.

При использовании ферми-жидкостных констант в качестве подгоночных параметров в рамках этой модели удается количественно описать весь экспериментальный набор зависимостей компонент тензора сопротивления и проводимости от магнитного поля и температуры (Рис. 1, 2). Найденные таким образом значения $F_0^{\sigma}, \tilde{F}_0^{\sigma}$ для различных концентраций электронов оказываются близкими к теоретическим зависимостям [1], а величина константы F_0^{σ} , описывающей диффузионный вклад, находится в хорошем согласии с результатами других экспериментальных работ (Рис. 3).

Рис. 2. Температурная зависимость σ_{xx} (a,c) и σ_{xy} (b,d) для разных магнитных полей. Символы – экспериментальные данные, линии – расчет согласно (1) - (3). Структура T1520.

Рис. 3. Зависимость ферми-жидкостных констант от величины газового параметра r_s . Сплошные и полупустые символы – результаты данной работы, пустые символы – экспериментальные результаты из других работ. Линии – расчет согласно [1].

Работа поддержана грантами РФФИ № 04-02-16626, 05-02-16413 и 06-02-16292, CRDF № У1-Р-05-11.

[1] G. Zala, B. N. Narozhny, and I. L. Aleiner, Phys. Rev. B 64, 214204 (2001).

[2] I. V. Gornyi and A. D. Mirlin, Phys. Rev. B **69**, 045313 (2004).

Свойства квантово-размерных структур на основе GaAs/InGaAs, содержащих б-слои марганца

О.В. Вихрова¹, <u>Ю.А. Данилов</u>^{1,2}, Ю.Н.Дроздов², Б.Н.Звонков¹, F. Iikawa³, М.J.S.P. Brazil³

¹Научно-исследовательский физико-технический институт ННГУ, Нижний Новгород, Россия ²Институт физики микроструктур РАН, Нижний Новгород, Россия ³Insituto de Física "Gleb Wataghin", Universidade de Campinas, Campinas, Brazil

e-mail: danilov@nifti.unn.ru

Использование возможности управления структурой полупроводниковых зонной соединений и волновыми функциями носителей в них открывает новые перспективы влияния на физические свойства структур путем изменения таких характеристик носителей как концентрация И спин. Например, ферромагнитный порядок в квази-двумерных системах А2В6 и магнитных полупроводниковых гетероструктурах А3В5 может быть создан или нарушен изменением перекрытия волновой двумерного дырочного функции газа с магнитными примесями [1, 2]. В подобные структуры магнитная примесь часто входит в виде легированного слоя, где ее атомы распределены как б-функция. Это позволяет получить локально высокие концентрации магнитных моментов и носителей заряда и достаточно свободно управлять расположением магнитного слоя в выращиваемой структуре [3]. Вместе с тем, в литературе практически отсутствуют данные по изучению квантовых ям (КЯ) и квантовых точек (КТ) в системе GaAs/InGaAs, содержащей магнитные примеси.

Данная работа посвящена исследованию свойств структур, содержащих квантовую яму InGaAs или квантовые точки InAs, δ -слой углерода и δ -слой марганца. Получение структур осуществлялось сочетанием МОС-гидридной эпитаксии (выращивание буферного слоя, δ -слоя С, КЯ или КТ, спэйсерного слоя GaAs) с низкотемпературным лазерным распылением (δ -слой Мn и покровный слой GaAs). Температура нанесения слоев (T_g) при лазерном распылении составляла 450°С или 380°С. Толщина δ -слоя Mn (d_{Mn}) варьировалось от 0 до ~ 0.7 монослоев (ML). Спэйсерный слой GaAs, разделяющий δ -слой Mn и КЯ составляла 4 нм, для структур с КТ варьировался от 5 до 15 нм.

Кристаллическое совершенство слоев изучалось методом рентгеновской дифракции. О светоизлучающих свойствах структур судили по фотолюминесценции спектрам (ФЛ), полученным при 77К с возбуждением He-Ne лазером и при 1.8К с возбуждением аргоновым лазером. Для изучения электрических свойств изготавливались инлиевые контакты к поверхности структур, а измерения по методике Ван-дер-Пау выполнялись при комнатной температуре и при 77 К. Дополнительно

изучались температурные зависимости сопротивления (100-300К).

Рентгеноструктурные исследования позволили определить, что квантово-размерные структуры с КТ и с КЯ имеют хорошее кристаллическое качество, что относится и к покровному слою GaAs, полученному низкотемпературным лазерным распылением.

Спектры ФЛ, измеренные при T=1.8К и 77К, представлены на рис.1 и 2, соответственно. Видно, что светоизлучающие свойства структур значительно ухудшались с увеличением толщины δ-слоя Mn (табл.1).

Рис.1. Спектры ФЛ структур с КЯ, б-слоем С и б-слоем Мп различной толщины. Толщины бслоя Мп, соответствующие номерам структур 1-3 приведены в таблице 1.

Таблица 1. Электрические свойства квантоворазмерных структур с КЯ (1,2,3) и КТ (4,5,6). Температура выращивания δ -слоя Мп и покровного слоя GaAs составляла T_g =450°С.

N⁰	$d_{Mn},$ ML	300	Ж	77K			
		$\mu_{e\!f\!f},\ { m cm}^2/{ m Bc}$	$p_s,$ cm ⁻²	$\mu_{e\!f\!f},\ { m cm}^2/{ m Bc}$	<i>р</i> _s , см ⁻²		
1	0.1	230	$3 \cdot 10^{12}$	-	-		
2	0.3	170	$6 \cdot 10^{12}$	1930	$1 \cdot 10^{12}$		
3	0.5	140	$8 \cdot 10^{12}$	1930	$1 \cdot 10^{12}$		
4	0	220	$1 \cdot 10^{12}$	2440	$4 \cdot 10^{11}$		
5	0.03	125	9.10^{12}	1520	$1 \cdot 10^{12}$		
6	0.07	100	$2 \cdot 10^{13}$	1690	9.10^{11}		

Так, пики, соответствующие энергии основного перехода КЯ (В) и его LO-фононного спутника (А) практически не видны для структуры 3 с толщиной δ-слоя Mn ~ 0.5 ML. Еще более сильное воздействие оказывает присутствие даже тонкого слоя Mn (<0.1 ML) на излучательные свойства квантовых точек. Как видно из рис.2 (структуры 4 и 6), интенсивность пика ФЛ, отвечающего основному состоянию, в этом случае уменьшается на два порядка. гашение ΦЛ обусловлено Подобное расплыванием б-слоя Mn и диффузией атомов марганца в спэйсерный и покровные слои GaAs с созданием центров безизлучательной рекомбинации.

Кроме того, при T=1.8К в спектрах ФЛ виден пик, соответствующий акцепторному уровню Mn в GaAs (D). Этот факт также свидетельствует о расплывании δ -слоя Mn и о легировании прилегающих к нему слоев GaAs. Как было показано в [2], степень расплывания δ слоя Mn определяется его толщиной и температурой нанесения.

Рис.2. Спектры ФЛ структур с КТ, δ-слоем С и δ-слоем Мn различной толщины. Толщины δ-слоя Мn, соответствующие номерам структур 4-6 приведены в таблице 1.

Необходимо указать, что исследуемые структуры имеют три канала проводимости: δ -слой С, δ -слой Мп и КЯ или смачивающий слой. Все образцы демонстрируют p-тип проводимости, а их электрические свойства представлены в таблице 1. Очевидно, что приведенные значения подвижности и концентрации носителей - это эффективные средние значения для всей структуры.

Как видно из представленных данных, увеличение количества Mn в δ-слое приводит к значительному росту концентрации носителей при 300К и уменьшению подвижности. Этот факт демонстрирует влияние размытия слоя Mn на транспортные свойства квантово-размерных структур.

Практически для всех структур при понижении температуры до 77К подвижность носителей увеличивается на порядок. Увеличение подвижности свидетельствует о том, что доминирующим каналом проводимости при низких температурах становится КЯ или смачивающий слой для структур с КТ. Повидимому, при температуре 77К канал проводимости по δ-слою Mn практически не действует из-за вымораживания в нем носителей.

Вследствие дополнительного легирования марганцем сопротивление структур уменьшается в несколько раз, а характер его зависимости от температуры меняется (рис.3). Вместо увеличения, наблюдаемого для образца без Мп (4), происходит уменьшение R с понижением температуры вплоть до ~120К. При дальнейшем понижении температуры R незначительно Такой ход увеличивается. температурной зависимости сопротивления обусловлен возрастанием значительным подвижности носителей вследствие слабой ионизации примеси Mn и уменьшения рассеяния на тепловых колебаниях решетки.

Рис.3. Температурные зависимости сопротивления структур с КЯ (3) и КТ (4,5,6), содержащих δ-слои С и Мп.

Магнетосопротивление (МС) структур, измеренное при 77 К, было положительным и зависело значительным образом от степени легирования Мп. Так, если величина МС в структурах с КТ без δ-слоя Мп составляла ≈0.04 % (в магнитном поле 0.23 Т), то при содержании Мп, равном 0.4 ML, она увеличивалась в 10 раз. Аналогичная тенденция увеличения МС с ростом содержания Мп наблюдалась и в структурах с КЯ.

Работа выполнена при поддержке гранта CRDF (RUX0-001-NN-06/ВР1М01) и гранта РФФИ 05-02-16624.

[1] Haury, A., Wasiela, A., Arnoult, A., Cibert, J., Tatarenko, S., Dietl T. and d'Aubigné, Y. M, Phys. Rev. Lett., **79**, 511 (1997).

[2] Nazmul, A.M., Sugahara, S. and Tanaka, M., Phys. Rev. B, **67**, 241308 (2003).

[3] Dietl, T., Ohno, H., Matsukura, F., Gilbert, J., Ferrand, D., Sience, **287**, 1019 (2000).

Свойства силиката магния с примесью хрома в пористом кремнии и опале

Е.С.Демидов, И.С.Белорунова, О.Н.Горшков, Ю.И.Чигиринский,

М.О.Марычев

Нижегородский государственный университет им. Н. И. Лобачевского, Н. Новгород, Россия

М.В.Степихова

Институт физики микроструктур РАН, Н. Новгород, 603950 Россия e-mail: <u>demidov@phys.unn.ru</u>

Известно, что форстерит - силикат магния с примесью четырёхвалентного хрома Mg₂SiO₄:Cr относится к рекордсменам по практически реализованной высокой квантовой эффективности 38% фотолюминесценции (ФЛ) в районе наиболее высокой прозрачности систем кварцевой волоконной оптики около 1.3 мкм [1]. Ранее [2] была показана возможность с применением простой технологии формирования силиката магния с примесными ионами Cr⁴⁺ в структурах на основе Si. Силикат магния формировался пропиткой слоёв пористого кремния (ПК) на n⁺- и p⁺- типа Si подложках с последующим отжигом на возлухе. Наноразмерная топология ΠК способствует резкому ускорению формирования оксидов при температурах много меньших, чем температура роста монокристаллов форстерита. Отчётливый фотолюминесцентный отклик при 1.15 мкм был получен при комнатной температуре в слоях ПК с магнием и хромом на n⁺- Si, для которых оптимальным был отжиг ближе к 700°С.

В настоящей работе для синтеза оксидов с замещающим кремний четырёхвалентным хромом ПК применена та же, что и в [2] технология. Главные усилия были направлены на увеличение доли фазы Mg₂SiO₄:Сг и содержания Cr^{4+} . ионов Для этого производилась многократная процедура пропитки ПК водным раствором солей с последующим отжигом. Увеличить зарядовое состояние замещающих Si ионов Cr до уровня Cr⁴⁺ мы попытались осуществить дополнительным введением акцепторных ионов Na или Al из растворов их солей. Для сравнения аналогичная процедура проводилась с искусственным опалом, который имеет схожую с ПК наноразмерную структуру оксида кремния. Приводятся ланные исследования ФЛ, ЭПР, поперечного транспорта тока в слоях ПК, ФЛ и ЭПР в опале и спечённой Si-Mg-O керамике с разным содержанием Mg, Cr, ипи АІ.

Объектами исследования были три типа образцов. Слои ПК толщиной около 3 мкм, сформированные на монокристаллических пластинах сильно легированного кремния (КЭС 0.01 или КЭМ 0.005) с ориентацией (110). Технология формирования ПК с последующей пропиткой водными растворами солей Mg и Cr

(Mg:Cr≈100:1) и последующего окислительного отжига та же, что и в [2]. При добавке Na или Al с такой же атомной долей, как и Cr использовались растворимые в воде соли NaOH, NaNO₃ или Al(NO₃)₃. Вторым типом образнов был искусственный опал с аналогичными пропитками солей и отжигом. Третьим типом образцов была Si-Mg-O керамика, спечённая при 700°С из порошков толчёного опала и MgO с такими же как в форстерите пропорциями Si и Mg легированная Cr. Na или Al.

Измерения ФЛ производились при 77 и 300К на Фурье-спектрометре ВОЕМ DA3 с германиевым детектором, охлажлённым жидким Оптическая накачка азотом. проводилась светом с длиной волны 532 нм и мощностью излучения до 200 мВт полупроводникового лазера с удвоением частоты. Спектры ЭПР снимались на 3-см спектрометре при 293 К и 77 К.

Рис.1. Спектры ЭПР при 300К: 1- эталон MgO:Mn; 2- ПК с Mg и Cr и 10 мин отжигом при 700°С, плоскость образца перпендикулярна магнитному полю; 3- то же при параллельной ориентации образца; 4- ПК без добавок отожжённый 10 мин при 700°С; 5- Si-Mg-O керамика с добавками Cr и Na, отожжённая 10 мин при 700°С; 6- то же, что и 5 с добавками Cr и Al; 7- то же, что и 5 только с Cr.

В измерениях ЭПР (рис.1) в легированных ПК и опале, в отличие от форстерита с хромом,

была обнаружена интенсивная сравнительно узкая изотропная резонансная линия с фактором спектроскопического расщепления д≅1.998. В порошкообразном форстерите с хромом, такой линии нет. Вероятно, эта линия обусловлена ионами Cr³⁺, а не желательными для ИК ФЛ замещающими кремний ионами Cr⁴⁺. Возможно также образование другой фазы силиката магния MgSiO₃:Cr иными с параметрами кристаллического расщепления 3d-состояний хрома. Как видно на рис.1 добавление Na или Al приводит к подавлению линии с g≃1.998. особенно эффективна примесь натрия. Измерения ЭПР на образцах ПК с многократной пропиткой растворами солей Mg и Cr показали исчезновение связанного с наночастицами кремния в ПК видного на рис.1 анизотропного сигнала от Рьцентров и усилению линии с g≅1.998.

В результате многократных до 10 раз повторений процедуры пропитка-отжиг опала, как и в [2] для ПК, наблюдалась ФЛ с Mg и Cr с максимумом около 1.2 мкм (рис.2). Увеличение температуры отжига приводит к 3-х кратному усилению ФЛ. Однако, как видно на рис.2, много более интенсивная ФЛ имеет место в Si-Mg-O керамике. Добавление алюминия почти не меняет ФЛ керамики, а добавление натрия оказалось эффективным. Амплитуда пика ΦЛ ешё трёхкратно возросла, и он несколько сместился в Наблюдалось коротковолновую область. уширение спектра в коротковолновую область с ростом интенсивности лазерного возбуждения с 2.5 до 250 мВт.

Рис.2. Спектры фотолюминесценции при 300К опала и Si-Mg-O керамики с различными добавками: 1- опал с 10-ти кратными пропиткой раствором MgCl+CrO₃ и 10мин отжигом при 700°C; 2- то же с 10мин отжигом при 1000°C; 3-керамика с добавками Mg, Cr и Al, отожжённая при 700°C; 4- то же с добавками только Mg и Cr; 5- то же с добавками Mg, Cr и Na.

В случае ПК с Mg и Cr 10 кратная процедура пропитка-отжиг, как и в [2], обеспечила ФЛ с максимумом 1.17 мкм (рис.3). Однако, существенного усиления ФЛ не произошло. В отличие от опала не помогает, как и в [2], более 800°C. высокотемпературный отжиг при Интенсивность ΦП падает, максимум смещается в коротковолновую область длин волн. Добавление натрия приводит к сравнимой с многократной процедурой пропитка-отжиг ФЛ. Измерения для тех же образцов ПК при 77К показали 2-3-х кратное возрастание интенсивности ФЛ, но основные тенденции в изменении амплитуды спектров являются теми же, что и при 300К.

Рис.3. Спектры фотолюминесценции при 300К ПК с различным содержанием дополнительных примесей: 1- ПК без добавок, отожжённый 10мин при 700°С; 2- ПК с пропиткой MgCl+CrO₃+NaNO₃ и отжигом при 700°С; 3- ПК с 10-ти кратной пропиткой раствором MgCl+CrO₃ и отжигом при 700°С. 3- то же с отжигом при 800°С;

Таким образом, показана возможность формирования в ПК и опале легированной хромом фазы силицида магния со спектром ФЛ подобным таковому в Mg_2SiO_4 :Сг. Добавление около 1% натрия позволяет существенно усилить ФЛ. Применённая процедура насыщения пор магнием ещё не достаточно эффективна для формирования, как в ПК так и опале, максимально возможной доли фазы Mg_2SiO_4 :Сг вместо более устойчивого при низких температурах оксида $MgSiO_3$.

Работа выполнена при поддержке программы "Развитие потенциала высшей научной школы" 2005 г. (проект №4619).

[1] S. Kück// Appl. Phys, 2001, **B72**, 515 (2002).
[2] Е.С.Демидов, В.В.Карзанов, Н.Е.Демидова, И.С.Белорунова, О.Н.Горшков, М.В.Степихова, А.М.Шаронов//Материалы совещания «Нанофотоника 2004», ИФМ РАН, Н. Новгород, 2004, С. 267; ФТТ, **47**, 136 (2005).

Диагностика покрывающих слоев в многослойных структурах с квантовыми точками InAs(N) на GaAs(001), выращенных методом металлоорганической газофазной эпитаксии

<u>Ю.Н. Дроздов</u>, В.М. Данильцев, М.Н. Дроздов, А.В. Мурель, О.И Хрыкин, Н.В. Востоков, В.И. Шашкин

Институт физики микроструктур РАН, 603950 Нижний Новгород, Россия

Многослойные структуры с квантовыми точками (MQD) InAs и InAs(N) на подложках GaAs на длину волны 1,3 мкм имеют достаточно сложное строение. Каждый QD-слой покрыт $In_{0.12}Ga_{0.88}As$ тонкими слоями GaAs. И выращенными при пониженной температуре, около 500°С, а затем толстым барьерным слоем *GaAs*, осажденным при температуре выше 600°С. Внутреннее строение таких структур усложняется процессами, протекающими во время ростовых пауз, необходимых для смены температуры подложкодержателя [1]. Было обнаружено, что при добавлении азота его вхождение в InAs-точки незначительно, [1].

В настоящей работе MQD-структуры выращивали в реакторе металлоорганической газофазной эпитаксии (MOCVD) и исследовали методами фотолюминесценции (PL), атомносиловой микроскопии (AFM) и рентгеновской дифрактометрии (XRD). Обсуждаемые ростовые закономерности выполнялись для обоих типов структур, с азотом и без азота.

Для AFM-анализов изготавливали тестовые структуры, где рост был остановлен перед нанесением толстого барьерного слоя *GaAs*. AFM-данные наглядно показали что происходит во время ростовой паузы и подъема температуры. Когда, после прерывания процесса, температура сначала была поднята до 620°C на 3

Рис. 1. АFM изображение поверхности структуры, где QD покрыты тонкими слоями InGaAs и GaAs при температуре 510°C.

минуты, и только после этого структура охлаждена до комнатной температуры, на поверхности структуры вместо крупных островков (рис. 1) появились крупные углубления (рис. 2). Крупные островки, не закрытые до верха слоями InGaAs и GaAs, растворились и, возможно, частично испарились при повышенной температуре. Известно, что крупные островки обычно имеют дислокации. Такие дефектные островки нежелательны,

Рис. 2. AFM изображение поверхности структуры, показанной на рис. 1 после отжига при 620°С в течение 3 мин.

поскольку являются центрами безизлучательной рекомбинации, и их растворение должно улучшать оптическое качество структур.

По литературным данным, при молекулярно-пучковой эпитаксии InAs ODструктур атомы In при отжигах интенсивно испаряются с поверхности [2], но в газофазном реакторе этот процесс существенно заторможен. Материал из крупных островков при их растворении может обогащать индием окружающую область за счет диффузии по поверхности, в результате чего. лолжен образоваться некоторый вторичный слой InGaAs. Такой слой наблюдали ранее на поперечных сечениях просвечивающей методами микроскопии электронной (TEM) [3] И сканирующей зондовой микроскопии (STM) [4]. Было показано, что вторичный слой InGaAs располагается над низкотемпературным слоем GaAs, т.е. формируется после подъема температуры в начале роста GaAs- спейсера.

В нашем эксперименте этот факт подтверждается рентгенодифракционными данными. Для всех MQD структур с тонкой низкотемпературной *GaAs*-прослойкой дифракционный пик слоя *InGaAs* (огибающая сателлитных пиков) расщепляется на 2 пика, становится двумодовым, см. рис. 3, спектр 2, что свидетельствует о том, что в данном случае слой

InGaAs нельзя представить как однородный. На рис. З показаны также спектры, вычисленные по динамической теории рассеяния. При расчете спектра использована 1 модель: 2×(смачивающий слой InAs; покрывающий слой InGaAs; спейсерный слой GaAs). В отличие от этого, для расчета спектра 2 после покрывающего слоя InGaAs добавлен тонкий слой GaAs и дополнительный (вторичный) слой InGaAs. Видно хорошее совпадение вычисленных и экспериментальных спектров. модуляция пика Дополнительная InGaAs возникает из-за интерференции отражений от двух слоев InGaAs, разделенных прослойкой GaAs. Рис. 3 показывает, что согласие экспериментальных и вычисленных спектров достаточно хорошее, поэтому представляется, что спектр типа 2 на рис. 3 может служить индикатором растворения крупных островков с образованием дополнительного слоя InGaAs.

Этот XRD-метод значительно проще исследования поперечных сечений методом TEM или сколов в вакууме методом STM.

Рис. 3. Экспериментальные (точки) и вычисленные (линии) спектры рентгеновской дифракции для двухслойных структур с *InAs(N) QD*: 1 - без тонкого покрывающего слоя *GaAs*; 2 - с таким слоем. Спектры разнесены по вертикали для наглядности. Излучение *CuKα1*.

При XRD-диагностике MQD-структур важно, что QD- островки, не смотря на то, что они когерентно входят в решетку, практически не изменяют положение дифракционных максимумов решетки планарных смачивающих + покрывающих + спейсерных слоев. Это связано с тем, что QD- островки сильно отличаются по периоду от матрицы. Они дают свой, далеко отстоящий дифракционный пик и в этом смысле не входят в усредненную решетку. Пик от мелких островков при исследовании на лабораторном источнике находится на уровне фона, поэтому не регистрируется. Влияние островков сказывается лишь за счет упругой деформации островком окружающей матрицы.

Известно, что при упорядоченном расположении островков по вертикали и тонком спейсере материал над "столбиком" из островков

"вспухает" на поверхности MOD- структуры, как это видно на рис. 1 над одним слоем островков, закрытых тонкими слоями. Модуляция полной толщины говорит о появлении отдельной периодической структуры (стопка островков + спейсеров над ними) со своим увеличенным периодом. Однако на наших структурах дополнительный период не проявлялся. Видимо, это связано с большой толщиной спейсера. В этих условиях островки не упорядочены по вертикали, и спейсерный слой "выглаживается" после каждого слоя QD в MQD- структуре. Появление дополнительных пиков вблизи пика GaAs в этой системе возможно также из-за флуктуации толщины смачивающего слоя даже на 1 монослой. Смачивающий слой создает

Рис. 4. Фотолюминесценция структуры с InAs(N) QD при комнатной температуре. Пик на 1,31 мкм соответствует основному оптическому переходу.

фазовый сдвиг между отражениями спейсерных слоев, и флуктуация сдвига нарушает идеальную картину дифракции периодически расположенных слоев *GaAs*. В исследованных нами MQD-структурах таких нарушений не наблюдалось, что свидетельствует об одинаковой толщине смачивающих слоев.

Регистрируемые особенности *InAs(N)* MQDструктур со сложным строением покрывающих слоев объясняют их хорошую фотолюминесценцию в области 1,3 мкм при комнатной температуре, см. рис. 4.

[1] В.И. Шашкин, В.М. Данильцев, М.Н. Дроздов, и др. ФТП, **40**, 4, 455 (2006).

[2] Д.С. Сизов, М.В. Максимов, А.Ф.

Цацульников, и др. ФТП, **36**, 9, 1097 (2002).

[3] G. Saint-Girons, G. Patriarche, L. Largeau, et al.,

J. Crystal Growth **235**, 89, (2002).

[4] A. Lenz, H. Eisele, R. Timm, et al., Appl. Phys. Lett. **85**, 3848, (2004).

Спиновая релаксация электронов, локализованных на мелких и глубоких донорных центрах в кремнии, при различном содержании ядер ²⁹Si и изменении изотопического беспорядка

<u>Д.В. Гусейнов¹</u>, Д.В. Хомицкий¹, А.А. Ежевский¹, А.В. Гусев²

¹Нижегородский государственный университет им. Н.И. Лобачевского, пр. Гагарина 23, Н. Новгород ²Институт химии высокочистых веществ РАН, ул. Тропинина 49, Н. Новгород, Россия e-mail: ezhevski@phys.unn.ru

В последнее время, в связи с развитием спинтроники И перспективами создания твердотельных квантовых компьютеров на основе ²⁸Si:Р и GaAs квантовых точек, вновь возрос интерес к релаксационным процессам в спиновых системах. Особенностью моделей на основе моноизотопного кремния является то, что у изотопа кремния ²⁸Si ядерный спин равен нулю, в то время как у галлия и мышьяка таких изотопов нет. Поэтому в моделях на основе кремния легче выполнить условие спиновой когерентности при квантовых операциях из-за больших времен спиновой релаксации спиновой дефазировки (например, [1]). Появившаяся в настоящее время возможность работы с изотопно-обогашенными кристаллами позволяет исследовать ряд новых эффектов в релаксационных процессах. Одним из таких эффектов является предсказанная нами [2] линейная зависимость вклада суперсверхтонкого взаимодействия электрона, локализованного на дефекте (вакансия V⁻) и примеси железа Fe⁺ в кремнии в ширину линии ЭПР от концентрации ядер ²⁹Si с ненулевым спином. Такой механизм уширения дает наиболее существенный вклад в скорость спиновой релаксации при низких температурах. Для мелкого донорного центра нами ранее фосфора в кремнии [3] предполагалось отличное от [2] поведение концентрационной зависимости, что было обусловлено сложившимся в литературе представлением лишь о корневом характере зависимости сверхтонкого уширения от ²⁹Si. На основе методов концентрации ядер вклала суперсверхтонкого расчета взаимодействия в ширину линии ЭПР. описанных в [2], мы рассчитали аналогичный вклад для фосфора в кремнии. В расчетах использовались константы суперсверхтонкого взаимодействия для фосфора в кремнии, найденные экспериментально методом ДЭЯР в [4]. В отличие от [2] в проведенных расчетах, результаты которых приведены на рис. 1, учитывалось изменение формы линии с изменением концентрации, для чего производилась процедура деконволюции формы линии. Как видно из приведенной зависимости, при концентрациях магнитных ядер меньше 3%, зависимость становится линейной. Более быстрый линейный характер этой зависимости приводит к большим временам спиновой

дефазировки электронной спиновой системы при обогащении кремния изотопом с ненулевым ядерным спином. Наблюдающийся разброс в ширине линий ЭПР фосфора в моноизотопном кремнии-28 (0.022 мТ [4], 0.08 мТ [5], 0.045 мТ [3]) указывает на то, что она существенно зависит от истории исследованного образца и, действия следовательно, дополнительных механизмов. К таким механизмам можно отнести процессы, связанные со спин-решеточной релаксацией, а также более сложные процессы, когда одновременно участвуют спин-спиновые и спин-решеточные взаимодействия с участием спинов других дефектов.

Рис. 1 Зависимость вклада ССТВ в ширину линии от концетрации магнитных ядер для фосфора в кремнии.

Из температурных зависимостей ширины линий ЭПР, а также из экспериментов по насыщению спектров ЭПР непрерывному определены времена спин-решеточной релаксации в широком интервале температур в образцах кремния с различным изотопным легированных составом, хромом. Парамагнитный центр внедрения Cr⁺ в кремнии является хорошим объектом для изучения изотопических эффектов. Он обладает низкой растворимостью в кремнии, поэтому можно пренебречь его спин-спиновыми взаимодействиями. d-оболочка иона Cr^+ поэтому наполовину заполнена, основное состояние орбитальный синглет, а возбужденные состояния должны быть достаточно удалены и, поэтому в изолированном положении в решетке такой центр должен обладать существенно большими временами спин-решеточной релаксации по сравнению с центрами, имеющими больший вклад орбитального момента.

Нами исследованы образцы моноизотопного кремния легированного хромом в диапазоне 2.5*10¹⁵ $1.5*10^{16}$ CM^{-3} . концентраций Зависимость скорости спин-решеточной (T_1^{-1}) температуры релаксации от (T)), представлена на рис. 2. Видно, что скорость спин-решеточной релаксации пропорциональна температуры выше квадрату 140K. И пропорциональна пятой степени температуры при температурах ниже 140К. Подобное скорости спин-решеточной поведение релаксации согласуется с моделью Блума-Орбаха [6].

Рис.2 Зависимость скорости спин-решеточной релаксации ионов хрома от температуры.

На вставке рис. 2 приведена зависимость T_1^{-1} от концентрации ионов хрома при температуре 77К. Скорость спин-решеточной релаксации увеличивается при понижении концентрации. Это может быть связанно с наличием других парамагнитных дефектов и примесных центров, таких как пары или комплексы хром-акцептор, концентрация которых сравнима с наименьшим концентрации ионов значением хрома. Посредством спин-спинового взаимодействия ионов хрома с данными центрами увеличивается эффективность спин-решеточной релаксации центра Cr⁺. В том случае, когда концентрация дефектов – посредников оказывается меньше концентрации ионов хрома, только их малая часть эффективно релаксирует, что не заметно на фоне более длительной спин-решеточной релаксации большей части ионов. не взаимодействующих с такими дефектами.

На рис. 2. также представлена зависимость Т₁⁻¹ (Т) для образца природного кремния. При температурах выше 62К скорость спин решеточной релаксации пропорциональна квадрату температуры. Перехода к зависимости 'T⁵" не наблюдалось независимо ОТ концентрации ионов хрома, что свидетельствует о наличии более быстрого параллельного канала релаксации. Значение T₁⁻¹ полученное при температуре ~5 К также не укладывается на закон T^5 . Параллельный канал спин-решеточной релаксации может быть связан с большим содержанием кислорода в образце природного кремния ($2 \cdot 10^{18}$ см⁻³, по сравнению с ~ 10^{16} см⁻³ для моноизотопного кремния). Поэтому при низких температурах канал релаксации «ион хрома – центр, связанный с кислородом – решетка – термостат» может оказаться более эффективным, чем собственная спин-решеточная релаксация ионов хрома. Передача энергии от иона хрома к иону кислорода может осуществляться посредством спин-спинового взаимодействия, которое в данном случае также становится температурно-зависимым.

Несмотря на наличие дополнительного канала релаксации в природном образце, спин-решеточной релаксации скорость в моноизотопном кремнии больше при высоких температурах, что обусловлено проявлением эффекта. изотопического Этот эффект рассматривается нами в рамках модели, в которой времени спин-решеточной для релаксации изотопное обогащение проявляется через процессы квазидиффузии фононов, рассеивающихся на изотопическом беспорядке. В условиях сильного рассеяния фононов дефектами либо изотопической примесью, время необходимое для установления теплового равновесия в фононной подсистеме T_{ph} может значительно превышать T_s – время, необходимое для передачи энергии от спина к фононам. Тогда полное время спин-решеточной релаксации Т₁ будет определяться наибольшим из этих времен (описание модели будет публиковано отдельно). Впервые такое поведение спиновой системы было нами замечено при сравнении времен спинрешеточной релаксации в интервале температур 77-300 К для порошков природного и моноизотопного кремния [7]. Работа выполнена при поддержке РФФИ, грант 05-02-16449.

[1] R. de Sousa and S. Das Sarma, Phys. Rev. B **67**, 033301 (2003).

[2] Guseinov D.V., Ezhevskii A.A., and Ammerlaan C.A.J. Physica B. 2006. (в печати).

[3] Emtsev V.V., Ammerlaan C.A.J., Ezhevskii

A.A., Gusev A.V. Physica B. ICDS-23 Proceedings, July 2005. (в печати).

[4] Feher G., Phys. Rev. 114,1219 (1959).

[5] Tyryshkin A. M., Lyon S. A., Astashkin A. V., and Raitsimring A. M., Phys. Rev. B **68**, 193207 (2003).

[6] Абрагам А., Блини Б. Электронный парамагнитный резонанс переходных ионов // Т. 1, из-во «Мир», М. 1972, с. 652. (Abragam A., Bleaney B. Electron Paramagnetic Resonance of Transition Ions. Clarendon Press, Oxsford, 1970. p. 651)

[7] Девятых Г.Г., Гусев А.В., Хохлов А.Ф., Максимов Г.А., Ежевский А.А. Гусейнов Д.В., Дианов Е.М. ДАН, том 376, №1, с. 62-65 (2001).

Процессы рекомбинации носителей заряда и передачи энергии в ансамблях кремниевых нанокристаллов

Д. М. Жигунов, О. А. Шалыгина, Д. А. Паленов, В. Ю. Тимошенко,

П. К. Кашкаров

Московский Государственный Университет им. М.В. Ломоносова, Физический факультет, 119992 Москва e-mail: zhigunov@vega.phys.msu.ru

Одним ИЗ методов увеличения эффективности люминесценции кремниевых структур формирование является нанокристаллов Перспективным (nc-Si) [1]. также является использование наноструктурированного кремния в качестве донора энергии для активации различных примесей, таких как ионы редкоземельных металлов или молекулы кислорода [2,3]. В настоящей работе исследованы кинетики и спектры фотолюминесценции (ФЛ) ансамблей кремниевых квазиупорядоченных нанокристаллов в матрице диоксида кремния (пс-Si/SiO₂) при различных температурах и уровнях возбуждения. оптического Наряду с экспериментальным исследованием проведен теоретический анализ процессов рекомбинации носителей заряда и переноса энергии в системе нанокристаллов кремниевых с помощью предложенной феноменологической модели.

Образцы структур $nc-Si/SiO_2$ были приготовлены реактивным распылением мишени SiO в вакууме и при определенном давлении O_2 , при этом на подложку c-Si последовательно наносились слои SiO и SiO₂. Формирование кремниевых нанокристаллов (nc-Si) достигалось высокотемпературным отжигом [4].

Полученные структуры nc-Si/SiO₂ характеризовались интенсивной (квантовый выход до 1%) и стабильной ФЛ при T=300 К,

Рис. 1. Спектры ФЛ образцов nc-Si/SiO₂ с различными средними размерами нанокристаллов *d*. ($E_{ex} = 3.7$ эВ, T = 300 K). Вставка: снимок поперечного сечения структуры с *d*=3.5 нм в просвечивающем микроскопе [4].

причем с уменьшением среднего размера нанокристаллов *d* наблюдался сдвиг максимума полосы ФЛ в сторону больших энергий квантов (рис.1). Измеренные кинетики ФЛ nc-Si/SiO₂ структур не являлись моноэкспоненциальными и хорошо аппроксимировались "растянутой экспонентой": $I = I_0 \exp\{-(t/\tau)^{\beta}\}$, где τ - среднее β время жизни ΦЛ параметр неэкспоненциальности. На рис. 2 представлены зависимости времён жизни ФЛ образцов пс-Si/SiO2 от обратной температуры. Видно, что с понижением температуры время жизни возрастает, что свидетельствует о переходе экситонов в долгоживущее триплетное состояние [5]. Пунктиром на рис. 2 показана аппроксимация экспериментальных данных зависимостью:

$$\frac{1}{\tau} = \frac{\frac{3}{\tau_t} + \frac{1}{\tau_s} \exp\left(-\frac{\Delta E}{k_B T}\right)}{3 + \exp\left(-\frac{\Delta E}{k_B T}\right)},$$
(1)

где k_B и T – постоянная Больцмана и температура соответственно, τ_t и τ_s – время жизни экситона в триплетном и синглетном состояниях, ΔE – разница энергий синглетного и триплетного состояний [6]. Полученные из аппроксимации оценки для τ_t и τ_s , а также для ΔE согласуются по порядку величины с соответствующими параметрами для изолированных nc-Si [6], но

Рис. 2. Зависимости времен жизни ФЛ образцов nc-Si/SiO₂ со средними размерами нанокристаллов d = 1.5 нм и 4.5 нм от обратной температуры (hv_{PL} = 1.53 эВ). Пунктиром показана аппроксимация по формуле (1).

имеют меньшее значение, что свидетельствует о наличии взаимодействия между нанокристаллами в исследуемых образцах.

Как уже упоминалось, экситоны, локализованные в кремниевых нанокристаллах могут выступать донорами энергии и активировать различные примеси-акцепторы. Для описания процесса донорно-акцепторного переноса энергии в связанных системах в данной работе была использована следующая система нелинейных дифференциальных уравнений:

$$\begin{cases} \frac{dN_1^D}{dt} = N_0^D \cdot \boldsymbol{\sigma} \cdot \frac{I_{exc}}{E_{exc}} - \frac{N_1^D}{\tau_D} - \boldsymbol{\gamma} \cdot N_1^D \cdot N_0^A \\ \frac{dN_1^A}{dt} = \boldsymbol{\gamma} \cdot N_1^D \cdot N_0^A - \frac{N_1^A}{\tau_A}, \end{cases}$$
(2)

 $N^{D} = N_{0}^{D} + N_{1}^{D}, \ N^{A} = N_{0}^{A} + N_{1}^{A},$ где N_{0}^{D} , N_{1}^{D} – число нанокристаллов, содержащих 0 и 1 экситон, или, другими находящихся основном и словами, в возбужденном состояниях, соответственно, N^D – общее число нанокристаллов, N_0^4 и N_1^4 – количество акцепторов энергии, находящихся в основном и возбужденном состояниях, N⁴ – общее количество акцепторов, τ_D – время жизни экситона, τ_A – время жизни возбужденного состояния акцептора, σ – сечение поглощения фотона нанокристаллом, у – коэффициент связи, характеризующий эффективность передачи энергии от нанокристаллов к акцепторам, Iexc и *E_{exc}* – интенсивность и энергия кванта накачки, соответственно.

Несмотря на то, что данная модель является приближенной, она позволяет получить ряд результатов, качественно важных согласующихся с данными эксперимента. В частности, варьируя коэффициент связи у при фиксированных значениях остальных параметров ($N^D = N^4 = 10^{19} cm^{-3}$, $\tau_D = 1.5 mc$, $\tau_A = 4mc$, $\sigma = 10^{-15} cm^2$, что соответствует реальным значениям для ансамблей nc-Si в присутствии молекул кислорода [3]) были получены различные зависимости относительной концентрации возбужденных нанокристаллов от интенсивности накачки (рис. 3). Видно, что с ростом коэффициента связи изменяется характер зависимости $N^{D}_{l}/N^{D}(I_{exc})$. При малых γ (кривая 1 на рис. 3) наличие акцепторов практически не возбуждения влияет на динамику нанокристаллов, и зависимость $N^{D}_{l}/N^{D}(I_{exc})$ плавно насыщается при увеличении накачки (что является характерным в случае отсутствия акцепторов). Отметим, что при больших сечениях поглощения σ значение N^D_{l}/N^D стремится к единице при увеличении I_{exc} (все нанокристаллы возбуждены). При больших у происходит интенсивная передача энергии от пс-Si к акцепторам. В результате этого в области малых накачек относительная концентрация возбужденных nc-Si уменьшается по сравнению со случаем малого коэффициента связи (кривые

Рис. 3. Расчетные зависимости относительной концентрации возбужденных нанокристаллов от интенсивности накачки при различных коэффициентах связи: $\gamma = 10^{-16}$ см³/с (*1*), 10^{-15} см³/с (*2*), 10^{-14} см³/с (*3*). Штриховые линии соответствуют линейным зависимостям.

2 и 3 на рис. 3). При увеличении накачки, приводящем к насыщению акцепторов, темп передачи энергии замедляется, и зависимость концентрации возбужденных нанокристаллов от интенсивности накачки становится сверхлинейной.

Сравнение полученных теоретических зависимостей относительной концентрации возбужденных нанокристаллов от интенсивности накачки с данными эксперимента (экситонная ФЛ в структурах nc-Si/SiO₂ в присутствие молекул кислорода или ионов Er^{3+} [2,3]) показало хорошее качественное совпадение результатов.

Таким образом, в работе проведена оценка времен жизни триплетного и синглетного состояний, а также величины энергии расщепления этих состояний. Предложенная в работе феноменологическая модель позволяет качественно описать процессы рекомбинации носителей заряда и передачи энергии в ансамблях взаимодействующих кремниевых нанокристаллов при наличии доноров энергии.

[1] D. Kovalev, H. Heckler, G. Polisski, F. Koch, Phys. Stat. Sol. (b), **215**, 871 (1999).

[2] В. Ю. Тимошенко, О. А. Шалыгина, М. Г. Лисаченко, Д. М. Жигунов, С. А. Тетеруков, П. К. Кашкаров, D. Kovalev, M. Zacharias, K. Imakita, M. Fujii, ФТТ, т. **47**, вып. 1, стр. 116-119 (2005).

[3] E. Gross, D. Kovalev, N. Kunzner, J. Diener, F. Koch, V. Yu. Timoshenko, M. Fujii, Phys. Rev. B, 68, 115405 (2003).

[4] M. Zacharias, J. Heitmann, R. Shcholz, U. Kahler, M. Schmidt, J. Bläsing, Appl. Phys. Lett., **80**, 661 (2002).

[5] A. G. Cullis, L. T. Canham, P. D. J. Calcott, J. Appl. Phys., **82**, 909 (1997).

[6] M. Fujii, Sh. Takeoka, Sh. Hayashi, Phys. Rev. B, **62**, 16820 (2000).

Блоховские осцилляции в сверхрешетках с негармоническим законом дисперсии

Ю.А.Романов, Ю.Ю.Романова, И.В. Келейнов, А.А. Рыжова

Институт физики микроструктур РАН, Н. Новгород, Россия e-mail: romanov@ipm.sci-nnov.ru

В последние годы проблема создания терагерцового блоховского генератора с управляемой статическим полем частотой обсуждается довольно широко. Основной препоной на пути реализации такого генератора является низкочастотная ломенная неустойчивость. Одним из путей ее подавления может быть использование сверхрешеток (СР) с негармоническим законом дисперсии, в которых эффективная масса электрона положительна в большей части минизоны и не растет к её краям [1]. В таких СР (по сравнению с СР с синусоидальной минизоной) статическая ОДП сдвигается в сторону сильных полей, а высокочастотная – в сторону слабых. Более того. если ширина минизоны такой СР близка к энергии оптического фонона, то реализуется односторонний или двусторонний стриминг, и статической ОДП дополнительно область сдвигается в сторону больших электрических полей, или совсем исчезает. Таким образом, области динамической и статической ОДП в таких СР оказываются разнесенными по величине постоянного поля, и возникает генерации (усиления) возможность терагерцового поля на участках ВАХ с положительной статической дифференциальной проводимостью.

Необходимый закон дисперсии может быть реализован в СР со сложной элементарной ячейкой сверхрешеточного потенциала, например. содержащей двойную несимметричную квантовую яму. В таких СР энергетический спектр электронов может представлять собой две почти «слипшиеся» минизоны, далеко удаленные от остальных минизон. При этом закон дисперсии нижней минизоны – квазипараболический, что (из-за значительного ангармонизма блоховских осцилляций) уже создает возможность возникновения значительной терагерцовой ОДП участках BAX с положительной на дифференциальной проводимостью в условиях стриминга. В отсутствии стриминга требуются сложные элементарные ячейки более И. соответственно, законы дисперсии минизон. В настоящей работе нами предложены варианты реальных СР на основе $GaAs/Al_xGa_{l-x}As$, в которых возникает указанный закон дисперсии. На рисунке 1 приведены два варианта элементарных ячеек сверхрешеток GaAs-AlAs с квазипараболическим законом дисперсии, на основе которых, по нашему мнению, можно построить терагерцовый блоховский генератор.

Рис.1 Примеры законов дисперсии СР со сложной элементарной ячейкой сверхрешеточного потенциала (на вставке). (a): V1=250 meV, (x=0.34), $d_1=5.6$ Å, $d_2=102$ Å, $d_3=5.6$ Å, $d_4=96$ Å, в случае b) V1=956 meV (x=1), V2=420 meV (x=0.55), $d_1=25$ Å, $d_2=5.6$ Å, $d_3=25$ Å, $d_4=11$ Å. Штрих-пунктирнная линия соответствует параболическому закону дисперсии.

В первом случае возникают две «слипшиеся минизоны», ширина двойной минизоны -36.1 мэВ, т.е. чуть больше энергии оптического фонона (0.036 мэВ), это обеспечивает реализацию стриминга, приводящего к смещению статической ОДП в область сильных полей. Третья минизона удалена от двойной на расстояние порядка 200 мэВ, поэтому её и все вышележащие минизоны можно не учитывать. Bo второй структуре первая минизона квазипараболическая, имеет ширину 36 мэВ, т.е равную энергии оптического фонона. Вторая минизона близка к первой, но из-за сильного рассеяния на оптических фононах электрон в нее практически не проникает. Третья минизона удалена от второй более, чем на 100 мэВ. Области с отрицательными эффективными массами занимают лишь небольшую часть вблизи границ зон Бриллюэна, в большей части зоны эффективная масса положительна Такие типы законов дисперсии не могут быть реализованы в СР с элементарной ячейкой, содержащей одну прямоугольную яму.

Рис.2. Статические вольт-амперные характеристики СР-1 (рис.1:а), Сплошные кривые рассчитаны по формулам работы [1], с вероятностью рассеяния на оптических фононах $\alpha = 0.5$, пунктирные – методом Монте-Карло. Кривые (1) соответствуют учету только одной нижней минизоны, (2) – сдвоенной минизоны.

При исследовании электронного транспорта в СР мы использовали аналитическую модель, предложенную в работе [1], И метол математического моделирования Монте-Карло, развитый на случай произвольного закона дисперсии сверхрешеточных электронов с учетом основных механизмов рассеяния: на оптических фононах акустических и И Проведенные ионизованных примесях. количественные расчеты показали, что благодаря несинусоидальности закона дисперсии области статическая ОДП сдвигаются в сторону больших полей. Статические ВАХ (рис.2), рассчитанные методом Монте-Карло с учетом основных

механизмов рассеяния находятся в хорошем качественном согласии с аналитическими расчетами.

На рисунке 3 приведена динамическая проводимость на частоте ω СР, находящейся под действием статического поля. Она вычислялась по формулам работы [1], вероятность рассеяния электронов на оптических фононах α=0.5 оценивалась из расчетов методом Монте-Карло. Постоянное поле $E_C = 3.5 \cdot 10^2 B / см$ выбиралось области положительной статической в в этой области генерация проводимости, низкочастотных доменов отсутствует. Видно, что динамической действительная часть проводимости становится отрицательной вблизи следующих второй И четных гармоник блоховской частоты $\gamma = eE_C d/\hbar\omega$ (d – период CP).

Рис.3. Динамические проводимости СР-1, находящейся в статическом поле амплитуды $E_C = 3.5 \cdot 10^2 B / cm$.

Таким образом показано, что предложенные нами СР со сложной элементарной ячейкой можно использовать для создания терагерцового генератора на гармониках блоховских осцилляций.

Работа выполнена при финансовой поддержке РФФИ (грант 04-02-17154а)

[1] Ю. А. Романов, Ю. Ю. Романова. Блоховские колебания в сверхрешетках. Проблема терагерцового генератора. ФТП **39**, 1, 162 (2005).

Терагерцовая отрицательная проводимость гетероструктурных барьеров при баллистическом транспорте горячих электронов.

В.А. Вербус¹, <u>В.А. Козлов</u>¹, А.В. Николаев¹

¹Институт физики микроструктур РАН, 603950, г. Нижний Новгород, Россия

kozlov@ipm.sci-nnov.ru

Освоение полупроводниковыми источниками излучения терагерцового (ТГц) диапазона со стороны оптических частот происходит в настоящее время с помощью квантовых каскалных лазеров [1-3], которые могут работать в верхней части данного диапазона. Для нижней части THz диапазона, примыкающей к микроволнам, также весьма желательно создать полупроводниковые источники стимулированного ТНz излучения. Однако, на этих частотах энергия кванта излучения $\hbar\omega$ сравнима с тепловой энергией kT (для температур 50 ÷ 300 K), поэтому здесь необходимо использовать системы, в которых электроны заселяют сравнительно большое число квантовых состояний. Для этой цели можно применять открытые системы с непрерывным спектром, в которых создается инверсия населенности, причем инверсии населенности в таких системах будет соответствовать положительная производная функции распределения электронов f по энергии \mathcal{E} .

В данной работе рассмотрена простая открытая система представляющая собой гетеробарьер специально подобранной формы, расположенный между двумя сильно легированными слоями гетероструктуры, играющими роль инжектора и экстрактора электронов. Механизм создания инверсии населенности и связанной с ней отрицательной проводимости при квазибаллистическом транспорте в нанометровых гетеробарьерах был предложен нами в работах [4,5]. Этот механизм основан на фазовой группировке горячих носителей при их квазибаллистическом движении над сравнительно низкими и тонкими барьерами полупроводниковых гетероструктур. Такая группировка приводит к тому, что вблизи характерных пролетных частот и их гармоник сгруппированные носители начинают совершать работу над высокочастотным переменным полем, что и приводит к появлению отрицательной дифференциальной проводимости (ОДП). Отметим, что схожие механизмы пролетной ОДП для вакуумной электроники были предложены еще в [6] и реализованы в вакуумных диодах [7].

В нанометровых слоях гетероструктур, характерные частоты, определяемые обратным временем баллистического пролета этих слоев горячими электронами, лежат в именно в ТГц диапазоне. Это делает такие гетероструктуры весьма привлекательными объектами для исследования в них пролетных механизмов ОДП и поиска путей ее повышения. В простом прямоугольном барьере, к которому приложено сильное постоянное и слабое переменное напряжение частоты ω , действительная часть высокочастотной проводимости $\sigma(\omega)$ определяется следующим выражением:

 $\sigma = \sigma_0 \left(2 - 2\cos \varphi - \varphi \sin \varphi \right) / \varphi^2$

здесь $\varphi = \omega \tau_0$ является фазой пролета; где $\tau_0 = (2m^*L/eE_c)^{1/2}$ - время пролета электроном барьера длины L, под действием постоянного поля $E_c = V_c / L$, созданного постоянным напряжением V_c , приложенным к барьеру. Величина $\sigma_0 = j_c / E_c$ представляет собой полную проводимость барьера на постоянном токе j_c . Возникающая при этом группировка электронов, являющаяся причиной ОДП на пролетных частотах ($\omega \approx 2.5\pi / \tau_0, 4.5\pi / \tau_0$ и т.п.) достаточно слаба. Она изображена на Рис. 1, где показаны траектории электронов, влетающие в барьер с равномерным распределением по фазе влета.

Рис. 1 Траектории баллистических электронов, движущихся над барьером с линейно спадающим профилем потенциала. Образующиеся вблизи левой границы (x = 0) сгустки электронов при дальнейшем движении в барьере до его правой границы (x = 0.1 мкм) находятся в такой фазе переменного поля, при которой они тормозятся и отдают энергию переменному полю.

Зависимость переменного напряжения от времени схематично изображена в виде двух синусоид на левой и правой границах барьера. Частота приложенного переменного напряжения $(\omega/2\pi = 2 THz)$ совпадает с частотой первого минимума ($\varphi_1 \approx 2.5\pi$) реальной части высокочастотной проводимости, величина которой равна $\sigma_{1\min} \approx -0.1\sigma_0$. Сгруппировавшиеся внутри барьера электроны (более темные области на Рис. 1) находятся в барьере преимущественно в отрицательных фазах переменного напряжения, поэтому работа переменного поля над электронами здесь отрицательна.

Для получения стимулированного излучения в системе с отрицательной проводимостью решающим условием является превышение величины отрицательной проводимости над пороговым значением, определяемым поглощением. Для выполнения этого условия нужно рассмотреть факторы, влияющие на величину ОДП. Так в работе [8], было установлено, что непараболичность зоны проводимости не оказывает существенного влияния на величину ОДП. Для преодоления порога поглощения весьма желательно отыскать такие гетероструктуры, в которых величина ОДП на высоких частотах значительно превышает максимально достижимую величину для простого барьера. Один из возможных методов повышения ОДП был предложен в [5], где для этой цели предлагалось использовать такие профили барьера, в которых величина инверсной заселенности виртуальных уровней существенно выше, чем в простом барьере.

Группировка носителей в барьере со специально подобранным профилем потенциала, увеличивающим инверсию населенности, показана на Рис. 2. Из этого рисунка видно, что группировка носителей здесь выражена существенно ярче, чем в простом барьере.

Рис. 2 Траектории электронов при движении над барьером специального профиля, увеличивающего инверсию электронов.

На Рис. 2 ясно видно формирование виртуального катода вблизи левой границы барьера (x = 0), наличие которого способствует сильной группировке электронов. Частота переменного поля здесь также соответствует первому отрицательному минимуму проводимости. Видно, что набравшие скорость сгустки электронов двигаются внутри барьера в основном в тормозящем переменном поле, и вылетают через правую границу (x = 0.1 мкм), когда переменное поле меняет знак с минуса на плюс. В результате ОДП на высоких частотах в таком барьере значительно (более чем в шесть раз) превышает ОДП простого барьера.

Наряду с этим в настоящей работе предложено использовать синхронное взаимодействие электронов (двигающихся в барьере со скоростью зависящей от координаты), с переменным электрическим полем. Для этого профиль барьера подбирается так, чтобы частота колебаний электрона, двигающегося по "стиральной доске", определяемой профилем потенциала барьера, примерно совпадала с частотой переменного поля.

Таким образом, проведенное в настоящей работе математическое моделирование поведения электронов в рассматриваемой системе показало, что можно отыскать такие профили потенциала барьера, при которых отрицательная проводимость существенно превышает величину отрицательной проводимости для однородного барьера. Подходящие профили барьера отыскивались нами из соображений повышения в них инверсии населенностей горячих электронов. Таким образом, в настоящей работе показано, что даже в открытых системах соотношения Эйнштейна для спонтанного и стимулированного излучения, указывают пути, позволяющие находить большие величины отрицательной проводимости без проведения трудоемких расчетов проводимости во всей области параметров.

Квантовомеханическое описание предложенного механизма динамической ОДП для ступенчатых гетероструктур, создаваемых методом зонной инженерии было проведено в [9]. Квантовый подход для приборов вакуумной электроники изложен в [10].

Поддержано РФФИ, грант № 05-02-17121

- 1. J.Faist, F.Capasso et al, Science 1994, 264, 553.
- M.S. Vitiello, G. Scamarcio, V. Spagnolo, B.S. Williams Appl. Phys. Lett. 2005, 86, 111115
- 3. Р.Ф. Казаринов, Р.А. Сурис, ФТП, 1971, **5**, 797
- 4. V.A.Kozlov, A.B.Kozyrev, A.V.Samokhvalov,
- Mater. Sci. Forum 2002, **384**, 139 5. V.A. Kozlov, A.V. Nikolaev, A.V. Samokhvalov, Semicond. Sci. Technol. 2004, **19**, S99
- 6. W.E. Benham, Philos. Mag. 1931, **11**, 457
- 7. F.B. Llewellyn, A.E. Bowen, Bell Syst. Tech. J. 1939, **18**, 280
- Z.S. Gribnicov, N.Z. Vagidov, V.V. Mitin, G.I. Haddad, J.Appl.Phys., 2003, 9, 5435.
- V.A. Kozlov, A.V. Nikolaev, V.A. Verbus, 14th Intern. Conf. on Nonequilibr. Carrier Dynamics in Semicond., 2005, July 24-29, Chicago, USA
- 10. Э.В. Абубакиров, М.И. Петелин, Известия ВУЗов: Радиофизика, 1983, **26**, 1141

Резонансные состояния акцепторов в гетероструктурах Ge/GeSi с квантовыми ямами и в объемном Ge в магнитном поле

В.Я.Алешкин, Д.В.Козлов

Институт физики микроструктур РАН, ГСП-105, Нижний Новгород, 603950 e-mail: <u>dzkoz@ipm.sci-nnov.ru</u>

Введение

В полупроводниках и полупроводниковых гетероструктурах структурах резонансные состояния примесей возникают, когда дискретные уровни попадают в непрерывный спектр. Это происходит, например, в квантовых ямах, когда примесные состояния под верхними подзонами размерного квантования попадают в континуум первой подзоны. Аналогичная ситуация реализуется при приложении магнитного поля, где примесные состояния, связанные с верхним уровнем Ландау, попадают в непрерывный спектр первой магнитной подзоны. Работа посвящена определению энергии и времени жизни резонансных состояний акцепторов в гетероструктурах Ge/GeSi и в объемном германии при приложении магнитного поля. В [1] разработан метод расчета резонансных состояниях акцепторов в гетероструктурах с квантовыми ямами. В этой работе не учитывалось влияние на время жизни взаимодействия дырок с акустическими фононами. Однако как показано в [2], это взаимодействие определяет время жизни резонансных состояний доноров в гетероструктурах GaAs/AlGaAs. В настоящей работе изучено влияние акустических фононов на время жизни резонансных состояний акцепторов в гетероструктурах с квантовыми ямами.

Метод расчета

Акцепторные состояния в гетероструктурах рассчитывались методом разложения по базису из собственных волновых функций дырок в отсутствии примесного иона, представленным в [2]. Волновые функции акцепторов имеют сложную структуру. Разложение включает члены, относящиеся к различным подзонам размерного квантования. Если разложение волновой функции некоторого состояния акцептора включает в себя в основном огибающие волновые функции определенной дырочной подзоны, то такое состояние можно считать относящимся к этой подзоне. Основное акцепторное состояние относится к первой подзоне размерного квантования hhl и обладает отрицательной энергией (относительно дна подзоны hh1). Энергии состояний, относящихся к верхним подзонам могут быть как отрицательными (локализованные состояния), так и положительными (резонансные состояния). Локализованные состояния, связанные с верхними подзонами, становятся резонансными при уменьшении ширины квантовой ямы.

Квазистационарные состояния, относящиеся к вышележащим подзонам в непрерывном спектре первой подзоны, выделялись с помощью анализа зависимости от энергии долей вышележащих подзон в состоянии:

$$A(E,n) = \sum_{k=0}^{\kappa_{F}} |C(E,k,n)|^{2}$$
(1)

где k_F –предельное значение двумерного волнового вектора дырки k в разложении, C(n,k) коэффициенты разложения, относящиеся ко *n*ной подзоне размерного квантования, E – энергия акцепторного уровня. Энергия квазистационарного состояния, принадлежащего *n*-ой подзоне, соответствует максимуму A(E,n).

Функция A(E,n) определяет долю локализованной части в волновой функции резонансного состояния. Были рассчитаны зависимости от энергии функций A(E,2) и A(E,3) для "нижнего возбужденного" квазистационарного состояния акцептора, помещенного в центр квантовой ямы гетероструктуры. Оказывается, что зависимость A(E,n) от энергии имеет резонансный характер. Время жизни дырки в резонансном состоянии, связанное с наличием в волновой функции такого состояния "распространяющейся" части (собственное время жизни) оказывается обратно пропорционально полуширине пика функции A(E,n).

С другой стороны, дырка может уйти в континуум нижней подзоны вследствие взаимодействия с акустическими фононами (время рассеяния на акустических фононах). Это время определялась по золотому правилу Ферми как:

$$1/\tau = \frac{2\pi}{\hbar} \int dEg(E) \langle \Psi_0 | \hat{H}_d | \Psi_E \rangle \qquad (2)$$

где Ψ_0 - энергия резонансного состояния относящегося к верхней подзоне, Ψ_E - энергия состояния непрерывного спектра нижней подзоны, \widehat{H}_d - деформационный гамильтониан описывающий возмущение, создаваемое акустическим фононом [3], g(E) - плотность состояний. Интегрирование ведется по энергиям непрерывного спектра нижней подзоны.

Результаты и обсуждение.

В таблице представлены собственная полуширина (определяемая по полуширине пика функции A(E,n)) уровней резонансных состояний акцепторов, расположенных в центре квантовых ям Ge/Ge_{0.88}Si_{0.12} гетероструктуры №306 с шириной квантовой ямы $d_{QW} = 200A$ (второй столбец) и полуширина резонансных акцепторных уровней, определенная из времени рассеяния на акустических фононах (третий столбец).

Таблица1 Параметры нижних резонансных состояний акцепторов в центре гетероструктуры №306. Вторая строка – состояние относящееся ко второй подзоне размерного квантования, третья строка – состояние относящиеся к третьей подзоне. Положение резонансных состояний указывается относительно края нижней подзо-

ны. Положение резонансного уровня	Собствен- ная полу- ширина	Полуширина за счет акустиче- ских фононов.			
3.75 мэВ	0.08 мэВ	0.27 мэВ			
10.5 мэВ	0.12 мэВ	0.29 мэВ			

Видно, что время рассеяния на акустических фононах в 2.5-3 раза меньше собственного времени жизни резонансных состояний акцепторов в гетероструктурах Ge/GeSi. Также отметим, что характерная полуширина резонансных акцепторных уровней, определенная из времени рассеяния на акустических фононах составляющая 0.27 – 0.29 мэВ, что близко к величине уширения уровней 0.25 мэВ, которая бралась в [4] в качестве подгоночного параметра при сопоставлении расчета с экспериментом.

В работе также разработан метод расчета резонансных состояний акцепторов в объемном германии при приложении магнитного поля. Метод основан на разложении акцепторной волновой функции по базису из собственных функций дырок в магнитном поле. Впервые проведен расчет положения резонансных уровней, относящихся к верхним уровням Ландау.

Работа выполнена при поддержке РФФИ (гранты 05-02-17341, 04-02-17178), BRHE (Y2-P-01-08) и гранта Президента России МК-1860.2005.02

- 1. V.Ya.Aleshkin *at all.*, Nanotechnology, 2000, v.11, No 4, pp. 348-350.
- В.Я.Алешкин,Л.В.Красильникова, Материалы совещания «Нанофотоника». -Н.Новгород, ИФМ РАН. – 2003. - С. 318.
- Бир Г.М., Пикус Г.Е. Симметрия и деформационные эффекты в полупроводниках. (М., Наука, 1972), с.294

 Алешкин В.Я., Андреев Б.А., Гавриленко В.И., Ерофеева И.В., Козлов Д.В., Кузнецов О.А.// ФТП. 2000. Т.34. с.582

Осцилляции субмиллиметровой фотопроводимости в нелегированных гетероструктурах InAs/AlSb с двумерным электронным газом

В. И. Гавриленко¹, А. В. Иконников¹, <u>С. С. Криштопенко¹</u>,

Ю. Г. Садофьев², S. R. Johnson², Y.-H. Zhang²

¹Институт физики микроструктур РАН, ГСП-105, Нижний Новгород, 603950, Россия ² Arizona State University, Tempe, AZ 85287, USA

e-mail: ds_a-teens@mail.ru

Введение

Квантоворазмерные гетероструктуры на основе InAs представляют большой интерес для созлания различных электронных и оптоэлектронных приборов, а также приборов спинтроники [1]. Интересным представителем таких систем являются гетероструктуры InAs/AlSb. Следствием большой глубины квантовой ямы для электронов является наличие 2D электронного газа в квантовой яме даже в нелегированных структурах. Возможными «поставщиками» электронов в квантовую яму InAs считаются глубокие доноры в барьере AlSb и поверхностные доноры в покрывающем слое GaSb [2, 3]. Концентрация 2D электронов в данной гетеросистеме при низких температурах изменяться благодаря явлению может остаточной фотопроводимости (ОФП), которая может быть как положительной, так и отрицательной. Положительная ΟΦΠ наблюдаемая при ИК фотоподсветке, связана с ионизацией нейтральных глубоких доноров в барьерах AlSb. Отрицательная ОФП связана с межзонной генерацией электрон-дырочных пар в AlSb при подсветке оптическим излучением. Фотовозбужденный электрон движется во встроенном электрическом поле от квантовой ямы и захватывается ионизованным донором. Дырка, напротив, движется к квантовой яме InAs и рекомбинирует с электроном из квантовой ямы. Тем самым, концентрация 2D электронов уменьшается. Концентрация может быть определена из осцилляций микроволновой фотопроводимости (ФП). Такие осцилляции наблюдаются практически в любом двумерном газе носителей с высокой подвижностью. Они периодичны в обратном магнитном поле и

Рис. 1. Возникновение фотоотклика ΔR_H на правом и левом крыльях холловского плато при разогреве 2D электронов.

аналогичны осцилляциям Шубникова-де-Гааза (ШдГ). В данной работе изучались зависимости осцилляций микроволновой фотопроводимости от дозы межзонной подсветки.

Эксперимент

Исследуемые гетероструктуры выращивались методом МПЭ на полуизолирующих подложках GaAs(100). Активная часть структуры выращивалась на метаморфном буферном слоя AlSb или GaSb и состояла из нижнего барьера AlSb толщиной 12 нм, квантовой ямы InAs толщиной 15 нм, верхнего барьерного слоя AlSb толщиной 30-40 нм и покровного слоя GaSb толщиной 6 нм.

Образец имел форму прямоугольной пластинки с характерными размерами 4х3 мм, краям которой были нанесены два по полосковых индиевых омических контакта. В качестве источника излучения использовалась лампа обратной волны ОВ-74. Излучение модулировалось с помощью механического прерывателя. Образец располагался в криомагнитной вставке, помещаемой В транспортный гелиевый сосуд Дьюара СТГ-40. Магнитное поле было направлено перпендикулярно поверхности образца. Через образец пропускался постоянный ток Поглощение субмиллиметрового излучения изменяло падение напряжения на образце. Для подсветки структуры использовался синий светодиод. Все измерения проводились при T = 4.2 К. Параметры образцов представлены в подписях к рисункам 2 и 4.

сильном магнитном В поле $\omega_c \tau > 1$ сопротивление образца практически совпадает с холловским сопротивлением и, соответственно, квантуется при выполнении условий квантового эффекта Холла (КЭХ). При разогреве электронного падающим газа субмиллиметровым излучением ступеньки КЭХ сглаживаются (рис. 1). Соответственно, на левом краю ступеньки имеет место уменьшение, а на правом – увеличение холловского сопротивления, что и приводит к осцилляциям фотоотклика, которые, как и осцилляции ШдГ, периодичны в обратном магнитном поле [4]. По периоду осцилляций в обратном магнитном поле были получены значения концентрации 2D электронов (Табл. 1).

Рис. 2. Осцилляции субмиллиметровой фотопроводимости в образце #A856 $(n_s = 6.5 \cdot 10^{11} \text{ см}^{-2}, 3.9 \cdot 10^5 \text{ см}^2/\text{B·c})$ при малых дозах подсветки синим светодиодом.

Рис. 3. Осцилляции субмиллиметровой фотопроводимости в образце #А856 при больших дозах подсветки синим светодиодом.

Рис. 4. Осцилляции субмиллиметровой фотопроводимости в образце #B824 $(n_s = 9.5 \cdot 10^{11} \text{ см}^{-2}, 4.4 \cdot 10^5 \text{ см}^2/\text{B·c})$ при малых дозах подсветки синим светодиодом.

Рис. 5. Осцилляции субмиллиметровой фотопроводимости в образце #В824 при больших дозах подсветки синим светодиодом.

ruomidu 1. Rondeni pudim di jineprisi a sieki ponos si opusidur 11050 n 2021 npri pusini n	пыл доза	
подсветки синим светодиодом.		

A856	R, Ом	50	52	56	61	70	81	93	110	122
	n_{s} , 10^{11} см ⁻²	6.96	6.56	6.54	5.88	4.55	3.71	3.14	3.02	2.89
B824	R, Ом	80	89	98	110	130	150	180		
	n_{s} , 10^{11} cm ⁻²	8.56	7.74	3.42	3.28	3.21	3.18	3.15		

Результаты и обсуждение

Ha рис. 2-5 представлены графики осцилляций микроволновой фотопроводимости в структурах А856 и В824. При некоторой дозе подсветки осцилляции «замываются» (рис. 2, 4). Мы полагаем, что это свидетельствует о возникновении неоднородностей в образце. Отметим, что это явление не наблюдалось при исследовании эффекта Холла на небольших образцах $(1x0.2 \text{ MM}^2).$ При дальнейшем увеличении дозы подсветки в образце вновь устанавливается однородное распределение при существенно носителей меньшей С концентрации. некоторого момента увеличение сопротивления роста при подсветке не сопровождается дальнейшей соответствующим уменьшением концентрации 2D электронов (рис. 3, 5). Это означает, что подвижность носителей падает заряда. Одновременно в этом интервале изменения сопротивления (для образца #А856: 93-122 Ом, для образца #В824: 110-180 Ом) нарастает амплитуда осцилляций ФП. Представляется, что это может быть связано с возрастанием флуктуаций потенциала ионизованных примесей, что приводит к уменьшению подвижности. Одновременно должна возрастать и доля локализованных состояний, электронов на уровнях Ландау, которые, как известно, ответственны за КЭХ. В свою очередь это приводит к наблюдаемому росту амплитуды осцилляций микроволновой ФП.

 D. Grundler // Phys. World. 2002. V.15. P.39.
 G. Tuttle, H. Kroemer, J.H. English // J. Appl. Phys. 1989. V.65. P.5239.

[3] C. Nguyen, B. Brar, C.R. Bolognesi, J.J. Pekarik, H. Kroemer, J.H. English // J. Electron. Mater. 1993. V.22. P.255.

[4] Пендж Р., Гирвин С. // Квантовый эффект Холла, М., «Мир» ,1989г.

Электронный транспорт и детектирование терагерцового излучения субмикронным полевым транзистором GaN/AlGaN.

<u>К.В.Маремьянин¹</u>, С.В.Морозов¹, Е.В.Демидов¹, В.И.Гавриленко¹, W.Knap², J.Lusakowski², M.A.Poisson³, E.Moran³, C.Dua³, C.Caquiere⁴, D.Ducatteau⁴

¹Институт физики микроструктур РАН, ГСП-105, 603950, Нижний Новгород, Россия ²GES –UMR, CNRS - Université Montpellier2, Place E.Bataillon 34950 Montpellier, France ³Thales Research & Technology, Domaine de Corbeville, 91404 Orsay Cedex, France ⁴IEMN/TIGER, 59655 Villeneuve d'Ascq, France

e-mail: kirillm@ipm.sci-nnov.ru

В последнее время отмечается большой интерес к детектированию терагерцового излучения полупроводниковыми приборами с использованием плазменных эффектов. Терагерцовому диапазону (0,3 – 10 THz) соответствуют частоты многих возбуждений в конденсированных средах, таких как фононы, переходы с участием мелких примесей, вращательные и колебательные возбуждения в жидкостях, а также газах и биологических объектах. Значительный интерес представляет использование терагерцовых методов для неразрушающего контроля и визуализации, в медицине, мониторинге окружающей среды, пищевой индустрии, борьбе с терроризмом и др. [1]. Для многих приложений предпочтительнее иметь быстрый детектор терагерцового перестраиваемый приложенным излучения, напряжением. Таким приемником может быть полевой транзистор с двумерным электронным газом в канале [2-4]. В обычном режиме работы верхняя предельная частота полевого транзистора ограничена обратным временем пролета. Использование плазменных эффектов рабочую позволяет повысить частоту субмикронных полевых транзисторов вплоть до терагерцового диапазона частот [2], поскольку характерные скорости плазменных волн могут составлять 10⁸ см/с, что существенно выше дрейфовой скорости электрона в канале транзистора.

Дисперсионное соотношение для поверхностных плазменных волн в случае, когда толщина оксидного слоя между каналом и затвором *d* мала по сравнению с длиной волны плазменных волн, дается следующим соотношением [5]

$$\upsilon_p^2 = \frac{n_s e^2}{m^* \varepsilon_0} k^2 d , \qquad (1)$$

где n_s – концентрация электронов, ε_0 величина диэлектрической проницаемости оксидного слоя. Т. е., закон дисперсии имеет линейный вид

$$\omega_p = sk, \quad s = \sqrt{\frac{n_s e^2 d}{m^* \varepsilon_0}},$$
 (2)

где S скорость плазменных волн. Концентрация электронов $n_{\rm s}$ В первом приближении описывается простой формулой плоского конденсатора $n_s = \frac{CU_0}{c}$. Здесь С – емкость между затвором и каналом на единицу поверхности, $U_0 = U_{GS} - I_{DS}R_s - U_{th}$ – разность между напряжением на затворе, напряжением, падающем на контактном сопротивлении и напряжением отсечки транзистора, е – заряд электрона. Тогда скорость плазменных волн будет равна

$$s = \sqrt{\frac{e}{m^*}(U_{GS} - I_{DS}R_s - U_{th})}$$

(3)

Резонансная частота плазменных колебаний в подзатворном двумерном электронном газе определяется длиной затвора *L* и скоростью плазменных волн.

$$\omega_0 = \frac{\pi s}{2L} \tag{4}$$

Для больших U₀ справедливо следующее простое выражение для резонансной частоты

$$f_0 = \frac{\omega_0}{2\pi} = \frac{1}{4L} \sqrt{\frac{e}{m^*} (U_{GSs} - I_{DS} R_s - U_{th})} = \frac{1}{4L} \sqrt{\frac{e}{m^*} U_0}$$
(5)

Резонансная частота максимальна для нулевого напряжения на затворе и уменьшается до нуля по мере приближения U_{GS} к напряжению отсечки U_{th} .

Исследуемые В работе транзисторы выращенной изготавливались из методом молекулярно-пучковой эпитаксии GaN/AlGaN гетероструктуры с высокой подвижностью двумерного электронного газа. В докладе представлены результаты измерений для транзистора с длиной затвора L = 0.25 мкм, ширина канала составляла 30 мкм. Все измерения проводились при T = 4.2 K, в качестве источника излучения использовалась лампа обратной волны (ЛОВ) ОВ-74. Измерялась величина фотопроводимости в цепи исток-сток при развертке прикладываемого к затвору отрицательного постоянного напряжения относительно истока U_{GS}. Использовалась стандартная схема синхронного детектирования сигнала. Для характеризации транзисторов проводились измерения магнитосопротивления и зависимости тока "исток - сток" от напряжения на затворе ("переходная характеристика").

Типичная зависимость тока "исток-сток" I_{SD} транзистора от напряжения на затворе, измеренная при температуре T= 4.2 К показана на рис.2б (линия - 4). Видно, что транзистор закрывается при напряжении отсечки $U_{th} = -3.5$ В. Результаты измерения величины обратной сопротивлению транзистора в зависимости от магнитного поля представлены на рис.1. Зависимость проводимости от магнитного поля позволяет получить подвижность может быть оценена исходя из условия $\mu H_{1/2}/c = 1$, где $H_{1/2} -$ поле, при котором проводимость уменьшается в

поле, при котором проводимость уменьшается в два раза.

Рис. 1. Зависимость проводимости транзистора от магнитного поля при нулевом напряжении на затворе (данные измерения и аппроксимация).

Используя аппроксимацию измеренных данных, получаем значение $H_{1/2} = 28$ кЭ. Тогда оценка дает $\mu \approx 3570$ cm²/V·s при $U_{GS} = 0$. Это позволяет оценить из условия $\omega \tau = 1$ нижний предел частоты для наблюдения резонансного отклика как 380 GHz.

На рис.2а представлены зависимости фотоотклика транзистора от напряжения на затворе, измеренные при положительном (1) и отрицательном (2) направлении тока "сток – исток". Несовпадение экстремальных точек у графиков связано обоих с тем, что первоначальная (при нулевом напряжении на затворе) разность потенциалов U_{GS} между затвором и истоком имеет различное значение при противоположных направлениях тока "сток - исток". ФотоЭДС, полученная в результате вычитания первого графика из второго после смещения первого в область более малых значений напряжений U_{GS} изображена на рис.26 (3). Измерения проводились при частоте излучения f = 574 ГГц (hv = 2.37 мэВ). Наблюдаемой величине напряжения отсечки U_{th} = -3.5 В отвечает в соответствии с формулой (5) при нулевом напряжении на затворе резонансная частота $f_0 = 1.5$ ТГц, которая должна

уменьшаться до нуля при изменении U_{GS} от нуля до -3.5 V.

Рис. 2. а - зависимость фотоотклика транзистора от напряжения на затворе при положительном (1) и отрицательном (2) направлении тока "сток – исток"; б - результат вычитания первого графика из второго после смещения первого в область более малых значений напряжений U_{GS} (3), переходная характеристика транзистора (4).

Как видно из рис.26, при напряжении на затворе U_{GS} = -3В на кривой 3 наблюдается максимум фотоотклика. Резонансная частота колебаний плазменных В подзатворной электронной плазме для данного напряжения на затворе составляет в соответствии с формулой (5) $f_r = 576$ ГГц, т.е. практически совпадает с частотой излучения, на которой проводились измерения. Определенному ИЗ магнетотранспортных измерений значению подвижности соответствует на этой частоте значение параметра *о*_г *τ*=1.81. Это позволяет предположить, что данная особенность связана с резонансным откликом.

Работа выполнена при поддержке грантов РФФИ (#05-02-17374), РФФИ-CNRS (#05-02-22001) и Российской Академии Наук.

[1] B. Ferguson and X.-C Zhang. Nature Materials, **1**, 1. 26 (2002).

[2] M.Dyakonov, M.S.Shur. Phys. Rev. Lett. 71, 2465 (1993).

[3] M.Dyakonov, M.S.Shur. IEEE Trans. on Electr. Dev. **43**, 380 (1996).

[4] W.Knap et al. APL **30**, 3433 (2002).

[5] Equiluz, T.K. Lee, J. J. Quinn and K. W. Chiu.

Phys. Rev., v B11, 4989 (1975).

Влияние времени роста квантовых точек в гетероструктурах InGaAs/GaAs на интенсивность фотолюминесценции и ИК фотопроводимости

В.М.Данильцев, М.Н.Дроздов, Л.Д.Молдавская, Д.А.Пряхин, В.И.Шашкин, И.Ю.Шулешова

Институт физики микроструктур РАН, Нижний Новгород

введение

В последнее время значительный интерес вызывает исследование внутризонной ИК фотопроводимости (ФП) в полупроводниковых гетероструктурах с квантовыми точками. Вследствие снижения влияния фононного рассеяния такие структуры могут составить конкуренцию матричным фотоприемникам на квантовых ямах, работающих при температурах до 80К [1,2]. В большинстве известных нам работ основным критерием качества при формировании массивов КТ является интенсивная фотолюминесценция (ФЛ), в сущности, используются условия процессов роста, отработанные при изготовлении светоизлучающих структур. Однако, в работе [3] отмечалось, что наличие интенсивной ФЛ еще не гарантирует фотопроводимость на соответствующих внутризонных уровнях и напротив, заметная ФП может наблюдаться в отсутствие ФЛ, соответствующей данным уровням. В данной работе изготовлена гетероструктур, серия отличающихся эквивалентной толщиной слоя InAs d* для формирования KT. Проведено исследование фотолюминесценции и фотопроводимости в продольной и вертикальной геометрии электронного транспорта. Мы наблюдали различие в поведении ФП и ФЛ в структурах при повышении эквивалентной толщины слоя.

ЭКСПЕРИМЕНТ

Многослойные гетероструктуры InGaAs/ GaAs с квантовыми точками были выращены методом металлоорганической газофазной эпитаксии на подложках (100) GaAs. Активная область состояла из десяти слоев селективно легированных КТ, разделенных барьерными слоями GaAs толщиной 90нм. Детали роста структур приведены в нашей работе [4]. Межзонная и внутризонная ФП измерялась на Фурье спектрометре «ИНФРАЛЮМ ФТ-801» и монохроматоре МДР-41, использовался источник излучения глобар с температурой 1100°С.

РЕЗУЛЬТАТЫ

На рис.1 и 2 показаны ФЛ при 300К и продольная ФП при 77К в структуре А. Время роста КТ в этой структуре составляло 5сек., при этом толщина слоя InAs была близка к критической толщине, при которой начинается самоорганизованный рост КТ. Три линии ФЛ на рис.1 связаны с основным и возбужденным состояниями КТ и состояниями в смачивающем слое. Энергия основного перехода в КТ составляет 0.99эВ (1.25мкм) при 300К. Энергия соответствующего внутризонного электронного перехода составляет 0.3эВ, что демонстрирует рис.2. В структуре В время роста КТ было увеличено в два раза. В этой структуре мы наблюдали ФП на той же самой длине волны. Ширина линии оказывается несколько больше по сравнению со структурой А, однако ее интенсивность возрастает в 30 раз. По аналогии со структурой В

Рис.1. Спектр ФЛ структуры А.

Рис.2. Спектры ФП структур А и В.

была изготовлена структура С для измерений в вертикальной геометрии электронного транспорта, на ее основе были сформированы мезаструктуры с входным окном для излучения 100×100 мкм². В структуре С наблюдается вертикальная ФП на той же длине волны, что и в структуре В (рис.3).

Рис.3. Спектр вертикальной ФП структуры С.

Необходимо отметить, что в структурах с увеличенным временем роста КТ мы не наблюдали ФЛ от КТ даже при 77К. Мы связываем такое поведение с увеличением плотности КТ и сохранении их размеров и формы при увеличении d*. По-видимому, одновременно происходит рост числа дефектов в окружающих слоях, что и определяет гашение фотолюминесценции КТ, но оказывается не столь критичным для фотопроводимости.

При дальнейшем увеличении времени роста КТ до 15сек (структура D) происходит изменение в распределении размеров КТ. Рис.4 демонстрирует двухцветную внутризонную продольную ФП в диапазонах 4.5мкм и 3мкм (0.3эВ и 0.41эВ) и две линии межзонной ФП: 1.3мкм и 1.6мкм (0.92эВ и 0.77эВ). Это свидетельствует о формировании бимодального распределения размеров КТ в этом режиме роста: наряду с уже существовавшими КТ начинают формироваться более крупные кластеры InAs. Межзонная ФП в структурах с КТ связана с переходами между глубокими связанными состояниями, поэтому

Рис.4. Спектр ФП структуры D.

при низких температурах она не сопровождается ростом концентрации фотовозбужденных носителей тока, а обусловлена изменением полей рассеяния КТ [5]. При комнатной температуре межзонная ФП носит иной характер – переходы между связанными состояниями сопровождаются термоактивационным выбросом носителей в смачивающий слой или в состояния непрерывного спектра в слое GaAs, что приводит к росту концентрации носителей тока. Фотопроводимость структур с крупными кластерами InAs при 300К не имеет выраженного бимодального характера, ее основной особенностью является сохранение интенсивной ФП до длины волны 2мкм: I(2мкм)>I(1мкм)/10. Выше 2мкм начинается резкий спад интенсивности ФП. Наряду с этим, в некоторых структурах мы наблюдали узкую резонансную линию в спектре продольной ФП при 300К в области 2.5мкм (0.5эВ) - рис.5. Для структур InGaAs/GaAs эта область длин волн соответствует внутризонной ФП. В структурах с КТ фотопроводимость при комнатной температуре в этой области спектра ранее не наблюдалась.

Рис.5. Спектр ФП структуры Е.

Работа поддерживалась РФФИ, проекты № 04-02-17180, 06-02-16519.

[1] E.Finkman, S.Maimon, V.Immer, G.Bahir, S.E.Schacham, F.Fossard, F.H.Julien, J.Brault, M.Gedry. Phys.Rev.B, v.63, p.045323 (2001). [2] S.Maimon, E.Finkman, G.Bahir, S.E.Schacham, J.M.Garsia, P.M.Petroff. Appl. Phys. Lett., v.73, p.2003 (1998). [3] S.J.Lee, S.K.Noh, K.-S.Lee, J.W.Choe. Solid State Communication 132 115-118 (2004). [4] А.В.Антонов, Д.М.Гапонова, В.М.Данильцев, М.Н.Дроздов, Л.Д.Молдавская, А.В.Мурель, В.С.Туловчиков, В.И.Шашкин. ФТП, т.39, вып.1, 96-99 (2005). [5] В.М.Данильцев, М.Н.Дроздов, Л.Д.Молдавская, В.И.Шашкин, А.В.Германенко, Г.М.Миньков, А.А.Шерстобитов. Письма в ЖТФ т.30 в.19 с.87-94 (2004).

Эволюция времени фотоотклика приемника на циклотронном резонансе 2D электронов в GaAs/AlGaAs в условиях квантового эффекта Холла

<u>С.В.Морозов</u>¹, В.И.Гавриленко¹, К.Е.Спирин¹, Ү.Kawaguchi², S.Komiyama²

¹Институт физики микроструктур РАН, ГСП-105, Нижний Новгород, Россия

²Department of Basic Science, University of Tokyo, 3-8-1 Komaba, Meguro-ku, Tokyo 153-8902, Japan e-mail: more@ipm.sci-nnov.ru

Введение

Приемники дальнего ИК диапазона на циклотронном резонансе 2D электронов в условиях квантового эффекта Холла (КЭХ) в гетероструктурах GaAs/AlGaAs обладают высокой чувствительностью (*S*≈10⁷ В/Вт, NEP≤ 10⁻¹⁴ Вт/Гц^{1/2}) и хорошей селективностью [1-5]. Известно, что в условиях КЭХ продольное сопротивление Rxx стремится к нулю. Заметное Rxx в условиях циклотронного резонанса (ЦР) появляется в том случае, когда электроны и дырки возбуждаются излучением дальнего ИК диапазона в делокализованные состояния вблизи центров уровня Ландау выше и ниже уровня Ферми $E_{\rm F}$. В работе [5] была продемонстрирована ключевая роль случайного потенциала в формировании фоотклика. Было показано, что масштаб длины случайного потенциала может быть определен из постоянной времени фотоотклика т, которая экспоненциально растет с увеличением магнитного поля [6]. В то же время в центре плато КЭХ наблюдался характерный минимум τ соответствующего фактору заполнения при и= 2 [5]. В данной работе исследовалась эволюция времени фотоотклика приемника на КЭХ и обнаружено сильное немонотонное поведение τ вблизи плато КЭХ.

Методика эксперимента

Исследуемые образцы представляли собой холловские мостики, изготовленные из селективно легированной гетероструктуры GaAs/Al_{0.3}GaAs_{0.7} с 2D электронным газом с высокой подвижностью ($\mu_{4.2K} = 4.65 \cdot 10^5 \text{ см}^2/\text{B} \cdot \text{c}, n_s =$ 3.65·10¹¹ см⁻²). Они имели длинный проводящий канал 50мкм×170мм в форме меандра, заполняющего приемную площадку 4×4 мм [1,5]. Измерения проводились при T = 4,2 К или T = 2.4 К. Образец размещался в жидком гелии в центре сверхпроводящего, через образец пропускался постоянный ток смещения I = 2-4 мкА. В качестве широкополосного источника дальнего ИК излучения использовался кристалл p-Ge ($N_{\rm A}$ - $N_{\rm D}$ = $1^{-}10^{13} \text{ cm}^{-3}$) размером $12 \times 4 \times 2 \text{ мм}^{3}$, на противоположные грани которого были нанесены омические контакты. При измерениях через источник излучения пропускался импульс тока 300 мА длительностью 160 мкс с частотой повторения 16 Гц. Источник размещался в жидком гелии в том же криостате, излучение от источника к образцу подводилось посредством металлического полированного волновода диаметром 7 мм. Расстояние между источником и образцом было 30 см. Импульсный сигнал с приемника после усиления регистрировался цифровым осциллографом либо синхронным детектором и записывался на ЭВМ при развертке магнитного поля.

Рис. 1. Зависимости постоянной времени фотоприемники (светлые кружки), продольное сопротивление R_{xx} (пунктирная линия) и фотоотклика приемника (сплошная линия) от магнитного поля измеренные при температуре 2.4К. На вставке типичная осциллограмма сигнала фотоотклика в полулогарифмическом масштабе при $\nu \approx 2$.

Результаты и обсуждение

Типичные зависимости продольного сопротивления *R*_{xx} (пунктир) и фотоотклика (сплошная линия) на широкополосное излучение от p-Ge источника КЭХ детектора, а также времени отклика τ от магнитного поля показаны на Рис. 1,2. Хорошо видно, что фотоотклик возникает вблизи минимумов зависимости R_{xx} (H), соответствующих четным значениям фактора заполнения v=4и v = 2. В зависимости фотоотклика от магнитного поля при v = 2 наблюдаются два хорошо выраженных пика, что типично для случая, когда имеется «развитое» плато КЭХ [5]. При ухудшении «качества» минимума R_{xx} (например, при $\nu =$ 4) эти два пика сливаются в один. На вставке рис. 1. представлена типичная осциллограмма сигнала с приемника в полулогарифмическом масштабе, полученная в магнитных полях, соответствующих максимуму фотоотклика в левом пике при v = 2.Хорошо видно, что постоянная времени приемника τ (определяемая по спаду сигнала после выключения напряжения, прикладываемого к излучателю) возрастает более чем на порядок с увеличением магнитного поля.

Рис. 2. Зависимости постоянной времени фотоприемники (светлые кружки), продольное сопротивление R_{xx} (пунктирная линия) и фотоотклика приемника (сплошная линия) от магнитного поля, измеренные при температуре 4.2К.

Известно, что в системах с 2D электронным газом в сильных магнитных полях имеется длинномасштабный случайный потенциал, причем вблизи плато КЭХ амплитуда флуктуаций потенциала составляет порядка ħω_с это связывается с исчезновением эффекта экранирования в области КЭХ [7]. Этот случайный потенциал приводит к пространственному разделению фотовозбужденных электронов и дырок на уровнях Ландау расположенных выше и ниже уровня Ферми соответственно. Таким образом, это приводит к уменьшению скорости рекомбинации возбужденных носителей. Локализованный электрон (дырка) иногда может возбуждаться в делокализованное состояние вблизи центра уровня Ландау и таким образом участвовать в продольной проводимости, таким образом давать вклад в фотоотклик. Постоянная времени фотоотклика фактически определяется временем рекомбинации локализованных носителей, разнесенных в пространстве на характерное расстояние ΔY . В образцах с высокой подвижностью в сильных магнитных полях ΔY может существенно превышать магнитную длину $l_{\rm B} = (\hbar c/eH)^{1/2}$, которая определяет масштаб протяженности волновой функции носителя.

Если плато КЭХ (где продольное сопротивление фактически исчезает), хорошо развито, время жизни минимально в центре плато, потому что случайный потенциал не экранируется 2D электронным газом, что приводит к мелко масштабному случайному потенциалу и сильному перекрытию волновых функций электрона и дырки. Это наблюдается на Рис. 1,2 для случая при v = 2 (сравни с [5]). Время жизни растет с удалением *B* от центра плато (но в пределах холловского плато), т.к. экранирование становится эффективным благодаря возникновению продольного сопротивления. Включение экранирования случайного потенциала, приводит к увеличению пространственного разделения электронов

и дырок. По этой же причине в образцах с более высокой подвижностью т больше из-за более крупномасштабного потенциала. Когда В выходит за пределы холловского плато, продольное сопротивление не приводит больше к увеличению эффекта экранирования. За пределами плато возрастает количество электронов или дырок, находящихся в термическом равновесии, что приводит к увеличению вероятности рекомбинации возбужденного носителя заряда, и, следовательно, к уменьшению времени жизни, результатом чего является наблюдение двух острых максимумов в зависимости τ от *B* при $\nu = 2$ (Рис. 1,2). Подобная картина наблюдается также для *v* = 4, при T = 2.4 К (Рис. 1). Хотя в случае v = 4, при T = 2.4 К плато менее развито и есть только один явный пик фотооклика (на правой стороне плато), зависимость времени отклика от магнитного поля показывает структуру с двумя пиками с минимумом в центре плато.

В сильных магнитных полях время отклика экспоненциально увеличивается с полем [5, 6]:

 $\tau = A \exp \{(\Delta Y/2l_B)^2\} = A \exp(H/H^*),$ (1) где магнитное поле H* связано с характерным расстоянием ΔY как

 $\Delta Y = 2(\hbar c/eH^*)^{1/2}.$ (2)

Из увеличения времени отклика при $v \approx 2$ (правильный пик) по сравнению со временем отклика при $v \approx 4$ (Рис. 1,2) можно определить характерное значение магнитного поля H^* , что дает следующие значения для ΔY :

T = 2.4 K $H^* = 6.55 \text{ T}$ $\Delta Y = 200 \text{ A};$ T = 4.2 K $H^* = 3.12 \text{ T}$ $\Delta Y = 300 \text{ A}.$

Эти значения в два раза меньше, чем полученные для образца с более высокой подвижностью [6], что соответствует ранее предложенному механизму фотоотклика детектора на КЭХ [5].

Работа выполнялась при финансовой поддержки РФФИ (проект №06-02-16236) и РАН.

- Komiayma S., Kawano Y., Hisanaga Y. // Proc. 21st Int.Conf. on Infrared and Millimeter Waves (Berlin). 1996. BT2.
- [2]. Kawano Y. and Komiyama S. // Phys. Rev. B. 2000. V.61. P.2931.
- [3]. Antonov A.V., Erofeeva I.V., Gavrilenko V.I., Kalugin N.G., Korotkov A.L., Maslovskii A.V., Moldavskaya M.D., Pripolzin S.I., Vaks V.L. // Ins. Phys. Conf. Ser. 1999. N 162. P.111.
- [4]. Andreev B.A., Erofeeva I.V., Gavrilenko V.I., Korotkov A.L., Yablonskiy A.N., Astafiev O., Kawano Y. and Komiyama S. // Semicond. Sci. Technol. 2001. V.16 P.300.
- [5]. Kawano Y., Hisanaga Y., Takenouchi H. and Komiyama S. // Journ. Appl. Phys. 89, 4037 (2001).
- [6]. Erofeeva I.V., Gavrilenko V.I. and Komiyama S. // Nanotechnology 2001 V.12 P.453
- [7]. Chklovskii D.B., Shklovskii B.I. and Glasman L.I. // Phys. Rev. B. 1992. V.46. P.4026.

Получение гетероструктур с квантовыми точками в системе (B,In,Ga)As

Д.А. Пряхин, Н.В. Востоков, В.М. Данильцев, М.Н. Дроздов,

Ю.Н. Дроздов, А.В. Мурель, О.И. Хрыкин, В.И. Шашкин

Институт физики микроструктур РАН, Нижний Новгород, 603950, ГСП-105, Россия

e-mail: pda@ipm.sci-nnov.ru

Задача получения новых эпитаксиальных гетероструктур на подложках арсенида галлия, перспективных для применения в ближнем и среднем ИК – диапазоне, привлекает в последнее время внимание многих исследовательских групп. Одно из направлений исследований в этой области связано с квантовыми ямами и точками InAs(InGaAs)/GaAs. Для получения структур с заданными свойствами применяются различные приемы, связанные как с совершенствованием технологии эпитаксиального роста, так и с исследованием возможностей использования различных добавок в систему InAs-GaAs с целью увеличения длины волны излучения и сдвига в длинноволновую часть спектра. Известно, что добавка азота в слои InGaAs позволяет снизить рассогласование кристаллической решетки подложки и эпитаксиального слоя и приводит к «красному сдвигу» длины волны излучения в слоях InGaAs(N). Другой подход к решению задачи может быть связан с использованием нового полупроводникового материала. содержащего в своем составе атомы бора. Вполне очевидным является уменьшение параметра решетки при введении его в твердый раствор, поскольку атом бора обладает заметно меньшим ковалентным радиусом, чем Ga. В ряде работ, посвященных данной тематике [1-3] показана возможность введения атомов В в состав твердых растворов в системе (In,Ga)As и получения эпитаксиальных слоев с содержанием бора до 3%. Увеличение концентрации этого элемента до 6% приводит к нарушению кристаллической структуры эпитаксиальных слоев [1].

В настоящей работе была предпринята попытка получения полупроводниковых гетероструктур с квантовыми точками (КТ) в системе (B,In,Ga)As и проведено исследование их свойств.

Лпя этих целей методом металлоорганической газофазной эпитаксии (МОГФЭ) на подложках GaAs были выращены структуры с квантовыми точками BInAs. Эпитаксиальный проводился рост в горизонтальном реакторе МОГФЭ пониженного давления EPIQUIP VP-502RP с индуктивным нагревом держателя подложек. Рабочее давление в реакторе - 100 мбар. Источником мышьяка служил чистый арсин (AsH₃), а источниками III триметилгалий группы (TMGa) И триметилиндий (TMIn) и триэтилбор (TEB). В

качестве газа - носителя использовался водород. Процесс начинали с роста буферного слоя GaAs толщиной около 100нм при температуре 620°С. Далее формировали структуру с двумя слоями квантовых точек BInAs, выращенных при пониженной температуре (510°С). Каждый слой покрывали слоем InGaAs (6 нм) и далее, толстым барьерным слоем GaAs (100 нм), выращенным при 620°С. Были также изготовлены образцы без покровного слоя InGaAs. Необходимый поток триэтилбора был установлен в предварительных экспериментах [4] и выбирался таким, чтобы обеспечить максимальное вхождение бора с сохранением кристаллического совершенства слоя. На поверхности всех гетероструктур формировался слой квантовых точек. позволяющий оценить их плотность И распределение по размерам методом атомносиловой микроскопии (АСМ).

Полученные гетероструктуры были исследованы методами рентгеновской дифракции (дифрактометр ДРОН-4, монохроматор Ge(400), излучение CuKа₁), атомно-силовой микроскопии (сканирующий зондовый микроскоп "SOLVER-P4", NT-MDT, Зеленоград) и фотолюминесценции.

На рис.1 и рис.2 представлены АСМизображение поверхности гетероструктур, выращенных с добавкой ТЕВ и без него.

Рис.1. АСМ-изображение структуры с КТ BInAs.

Рис.2. АСМ-изображение поверхности гетероструктуры без добавки бора.

Из рисунков видно, что при выбранных условиях формирование квантовых точек InAs не происходит. Отсутствие фотолюминесценции от зарощеннных точек также свидетельствует об этом. Добавление бора в состав парогазовой смеси во время роста КТ при прочих равных условиях приводит к образованию квантовых точек и появлению фотолюминесценции с ллиной волны 1,2-1,3 мкм. На рис.3 представлено АСМ-изображение поверхности BInAs, полученного образца с КТ при увеличенном в два раза потоке ТЕВ.

Рис.3. АСМ-изображение структуры с КТ BInAs при увеличенном потоке TEB.

характеризуется Данная структура относительно высокой плотностью квантовых точек $(2*10^{10} \text{ см}^{-2})$ и однородным распределением их по размерам. Средний диаметр квантовых точек составляет величину порядка 30 нм и высоту 4 нм. Полученная структура обладает интенсивной фотолюминесценцией при комнатной температуре. На рис.4 приведены фотолюминесценции полученных спектры образцов с КТ BInAs с покрывающим слоем InGaAs (a) и без него (b).

Дальнейшее увеличение содержания бора в слоях приводит к срыву эпитаксиального роста и формированию дефектной поверхности типа «апельсиновой корки» (рис.5).

Рис.4. Спектр фотолюминесценции гетероструктур с КТ BInAs.

Рис.5. АСМ-изображение поверхности гетероструктуры, полученной при высоком содержании бора.

Таким образом, введение в состав КТ бора позволяет с одной стороны, изменить параметры кристаллической решетки в сторону уменьшения периода и уменьшить напряженность слоев, а с другой стороны, бор может служить сурфактантом и модифицировать ростовую поверхность, создавая более благоприятные условия для формирования однородных нанообъектов.

[1] H. Dumont, J. Dazord, Y. Monteil, F. Alexandre, L. Goldstein. J. Crystal Growth, **248**, 463 (2003)

[2] V. Gottschalch, G. Leibiger, G. Benndorf, J. Crystal Growth, 248, 468 (2003)

[3] J.F. Geinsz, D.J. Friedman, Sarah R. Kurtz, R.C. Reedy, G. Barber. J. Electrochem. Soc., **30**(11), 1387 (2001)

[4] Д.А. Пряхин, В.М. Данильцев, Ю.Н. Дроздов, М.Н. Дроздов, Д.М. Гапонова, А.В. Мурель, В.И. Шашкин, S. Rushworth. ФТП, Т.39, №1, (2005)

Работа выполнена при поддержке гранта РФФИ 04-02-17180

Нанокомпозиции на основе Si и Ge для применений в фотовольтаике: синтез из молекулярных пучков

О.П.Пчеляков, А.И.Никифоров, Б.З. Ольшанецкий, С.А.Тийс, К.Н. Романюк

Институт физики полупроводников СО РАН, пр. Лаврентьева 13, Новосибирск, Россия

e-mail: pch@ isp.nsc.ru

Наногетероструктуры на основе кремния с квантовыми точками германия становятся в настоящее время новым классом материалов для фотовольтаики. В разных научных центрах начаты исследования таких структур с целью применения в солнечных батареях и теплофотогенераторах. Уже первые результаты этих работ позволяют сделать вывод о перспективности применения нанотехнологии в этой важной области фотоэлектроники [1]. Объединение плотного массива нанокластеров в объеме полупроводниковой матрице квантовым транспортом носителей заряда в единую электронно - дырочную подсистему позволяет говорить 0 появлении нового класса промежуточной полупроводников с (или отщепленной) разрешенной зоной [2]. По мнению авторов этой работы, эффективность преобразования излучения в электричество для таких материалов может достигать 57%. В более поздних исследованиях [3] эта оценка увеличена до 63%. В работе [2] экспериментально показана возможность получения нового материала на основе соединений АЗВ5 легированных азотом и А2В6 легированных кислородом. Представляется исследовать возможность важным синтеза материала с промежуточной зоной на основе плотного массива нанокластеров Ge предельно малых размеров в кремниевой матрице [4].

Для системы Ge/Si нами разработаны методы получения массивов квантовых точек Ge малого размера (<10 нм), обеспечивающего энергию размерного квантования около 100 мэВ, распределенных на Si с поверхностной плотностью до (3-10)×10¹² см⁻² и разбросом размеров не хуже 17%. Типичные условия формирования структур Ge/Si(100) включают процессы гомоэпитаксии при 800°С со скоростью 1-2 монослоя (ML) в секунду, гетероэпитаксии Ge при 300°C, 0.2 ML/c, и эпитаксии Si поверх островков Ge при 500°C. Низкая температура при осаждении Ge и Si обеспечили подавление взаимной диффузии И нанокластеры Ge практически не содержали Si. Увеличение плотности островков Ge наблюдалось также в условиях роста на предварительно окисленной поверхности Si [5]. Однако предельно малые размеры нанокластеров и наностержней при

высокой степени их упорядочения удается получить при гетероэпитаксии первого субмонослоя псевдоморфной пленки на атомарночистой перестроенной гладкой или ступенчатой поверхности кремния. Эксперименты проводились в сверхвысоковакуумной системе STM (OMICRON).

Образцы Si очищались прогревом прямым пропусканием тока. Скорость напыления Ge изменялась от 10⁻³ до 10⁻¹ бислоев/мин (1 бислой — для Ge(111) содержит 1.44x10¹⁵ат/см²). Температура роста - в диапазоне 350–500°С. СТМ исследования проводились при комнатной температуре. На рис. 1 приведено СТМ изображение Ge островков на Si(111)-7x7 в различные моменты времени начальной стадии роста.

На рис. 1а приведено СТМ изображение после нанесения 0,02 бислоя германия. Светлое квадратное пятно в середине ячейки 7х7, вероятно, является зародышем Ge, состоящим из 4 атомов. При эффективной толщине пленки 0,17 бислоя четко различимы нанокластеры германия, находящиеся в одной из половин ячеек 7х7. После нанесения 0.4 бислоя можно видеть треугольные островки и много кластеров размером не более половины ячейки 7х7 (Рис. 1с). Эти кластеры образуют хорошо упорядоченную структуру. Этот факт был нами впервые отмечен в работе [6].

С помощью СТМ обнаружены также новые особенности атомной структуры регулярных трехбислойных ступеней на поверхности Si(557) до и после осаждения германия (Рис. 2а и 2б). Наблюдался эффект изменения поверхностного рельефа, позволяющий сделать предположение о формировании наноструктур типа квантовых стержней. Упорядоченность таких наноструктур диктуется регулярным расположением ступеней и преимущественным встраиванием атомов германия в двухгранный угол ступень-терраса. Как показали эксперименты при эпитаксии 0,3 БС Ge при 600°C поверхность Si(557) полностью покрывается структурой (5х5). Пока нет однозначного заключения о распределении Ge вдоль ступени, однако можно предполагать, что Ge компактно локализован на краю ступени 2d₁₁₁, либо Ge равномерно растворился в приросшей части ступени₁.

Рис. 1. СТМ изображения поверхности Si(111)-7 ×7 на начальной стадии роста Ge: a) 0.02 БС при $T = 380^{\circ}$ С и скорости роста $3 \cdot 10^{-3}$ БС/мин, размер изображения 7х7 нм, б) 0.17 БС при $T = 380^{\circ}$ С и скорости роста $3 \cdot 10^{-3}$ БС/мин, размер изображения 14х14 нм, в) 0.4 БС при $T = 350^{\circ}$ С и скорости роста $6 \cdot 10^{-3}$ БС/мин, размер изображения 23х23 нм.

В случае подтверждения возможности воспроизводимого получения упорядоченного ансамбля квантоворазмерных кластеров и наностержней германия на поверхности кремния открываются широкие возможности в конструировании наногетеросистем для приборов фотовольтаики нового поколения.

Рис. 2. СТМ изображение регулярных трехбислойных ступеней на поверхности Si(557) до (а) и после (б) осаждения 0,3 бислоев германия.

Работа выполнена при поддержке РФФИ (грант № 06-02-17275).

 [1] Алферов Ж.И., Андреев В.М., Румянцев В.Д.. ФТП, **38**, 937 (2004)
 [2] Yu K. M., Walukiewicz W., at.al. Phys. Rev. Lett. **91**, 246403-1 (2003)
 [3] Luque A., Marti A. ФТП, **38**, 975 (2004)
 [4] Пчеляков О.П., Двуреченский А.В., Никифоров А.И. и др. ФТТ **47**, 63 (2005)
 [5] Никифоров А.И., Ульянов В.В., Пчеляков О.П. и др. ФТТ, **47**, 67 (2005)
 [6] Никифоров А. И., Ольшанецкий Б. З., Пчеляков О. П., Соколов Л. В., Тийс С. А., Черепанов В. А., Фойхтлендер Б. Известия РАН, Серия физическая, **66**, 172 (2002)

Нелинейные свойства двумерных сверхрешеток в бигармонических полях

Ю.Ю.Романова, А.А Рыжова, Ю.А.Романов, И.В.Келейнов

Институт физики микроструктур РАН, Н. Новгород, Россия e-mail: jul@ipm.sci-nnov.ru

Известно, что в сверхрешетке (СР), находящейся в периодическом поле, средняя скорость электронов при определенных условиях обращается в нуль. Этот эффект получил название динамической локализации электрона (ДЛ). Условия на ДЛ зависят от формы периодического поля и закона дисперсии электрона. В одномерной СР с синусоидальной минизоной в одночастотном поле $E\cos(\omega t)$ это точки, соответствующие нулям нулевой функции Бесселя: $J_0(\widetilde{E}) = 0, \widetilde{E} = eEd/\hbar\omega$. В той же СР, но в бигармоническом поле условие на ДЛ – кривые плоскости взаимосвязанных значений на амплитуд компонент поля (E_1, E_2) [1], и т.д. В СР в приближение одного времени релаксации (т.н. τ-приближение) при тех же значениях полей эффект электромагнитной возникает И самоиндуцированной прозрачности (СИП), т.е. одновременное исчезновение всех гармоник тока в условиях редких столкновений (*ωτ* >>1, τ характерное время релаксации функции распределения электронов). Однако при нарушении τ-приближения эти два эффекта могут возникать не одновременно [2]. В частности, в [3] показано, что при наличии релаксационного перераспределения энергии и импульса между степенями свободы электрона [4] ДЛ и СИП двумерных СР в гармоническом поле возникают при разных значениях его амплитуды.

В настоящей работе, на основе уравнения Больцмана с предложенным нами модельным интегралом столкновений [3,4], учитывающим перераспределение, указанное исследованы эффекты электромагнитной прозрачности и детектирования двумерных CP в бигармоническом поле с соизмеримыми частотами

$$E(t) = \vec{x}_1 [E_1 \cos(\omega_1 t - \delta_1) + E_2 \cos(\theta) \cos(\omega_1 t - \delta_1)] + + \vec{x}_2 E_2 \sin(\theta) \cos(\omega_2 t - \delta_2), \quad n_1 \omega_1 = n_2 \omega_2.$$
(1)

Здесь поле с частотой ω_1 направлено вдоль оси x_1 , а поле с частотой ω_2 под углом θ к ней. Мы полагали, что закон дисперсии электронов в СР – аддитивный и гармонический:

$$\varepsilon(k) = \sum_{\alpha=1}^{2} \frac{\Delta}{2} [1 - \cos(k_{\alpha}d)], \qquad (2)$$

где Δ — ширина минизоны, d — период сверхрешетки, k_{α} -проекция волнового вектора электрона на кристаллографическую ось x_{α} .

Нами показано, что в полях (1) при $\theta = \pi/2$

из-за эффекта поперечного разогрева электронного газа области одномерных СИП (т.е. в направлении каждого из полей) зависят от амплитуд обоих компонент поля и не совпадают с областями динамической локализации (ДЛ) электронов (рис. 1). Лишь условия на полные СИП и ДЛ идентичны.

Этот результат опровергает укоренившееся в литературе мнение о тождественности эффектов СИП и ДЛ в СР.

Рис.1. Области СИП в двумерной СР, находящейся в бигармоническом электрическом поле с $\omega_2 = 3\omega_1$, $\theta = \pi/2$. На вертикальных кривых СР прозрачна вдоль оси x_1 , на горизотальных – вдоль оси x_2 . На вставке - одна из кривых в увеличенном масштабе, пунктирная прямая – условие одномерной ДЛ ($J_0(\tilde{E}_2) = 0$).

В двумерной СР с неаддитивным законом дисперсии

$$\varepsilon(k_1, k_2) = \Delta_1 \left\{ 1 - \frac{1}{2} \left[\cos(k_1 d) + \cos(k_2 d) \right] \right\} + \Delta_2 \left\{ 1 - \cos(k_1 d) \cos(k_2 d) \right\},$$
(3)

впервые рассмотренном в [5], взаимодействие между степенями свободы электрона существует и в приближении одного времени релаксации τ . В такой СР одномерная ДЛ в произвольно направленном гармоническом поле будет реализовываться лишь при его эллиптической поляризации (при сдвиге фаз δ между ортогонально направленными компонентами поля кратном $\pi/4$), а полная динамическая локализация вообще не возможна рис. 2.

Под действием произвольно направленных полей, отношение частот которых целое четное

число, в сверхрешетке возбуждается статический ток детектирования, величина и направление которого нелинейно и немонотонно зависят от амплитуд, фаз и направлений прикладываемых полей. При сдвиге фаз между полями $\alpha = \pm \pi/2$, где $\alpha = n_1 \delta_1 - n_2 \delta_2$, статический ток максимален.

Рис.2 Условия одномерной динамической локализации электрона (точки) в СР с законом дисперсии (3) вдоль оси x_1 (или x_2) в гармоническом поле произвольной направленности (формула (1), $\theta=\pi/2$). $\widetilde{E}_1(\widetilde{E}_2) = 2.405$

В качестве примера на рисунке 3 приведены зависимости величины (рис.3:а) и направления (рис. 3:b), статического тока (фугол между направлением статического тока и осью x₁) от угла между компонентами поля, при $\omega_2 = 2\omega_1$, $\alpha = -\pi/2$. Важно отметить, что статический ток возникает даже когда компоненты поля ортогональны друг другу. В случае он направлен вдоль этом более высокочастотного поля. Максимум наблюдается при $\tilde{E}_1 = 3.546$, $\tilde{E}_2 = 1.084$. Указанный эффект полностью обусловлен поперечным разогревом электронного газа и не может быть получен в рамках обычного т-приближения.

Если компоненты поля параллельны друг другу и направлены вдоль одной кристаллографической оси ($\theta = 0$), статический ток направлен вдоль поля и максимален при $\tilde{E}_1 = 1.089$, $\tilde{E}_2 = 0.677$.

Если отношение частот компонент поля нечетное число. то статический ток детектирования не возникает. Однако, из-за ΑΟΠ наличия областей в сильных гармонических полях статический ток может возникнуть и в этом случае. Например, если СР разомкнута по статическому току в направлении x_1 , а $\tilde{E}_1 = eEd/\hbar\omega_1 = 2.405$, $\omega_1 \tau > 1$, то в этом направлении спонтанно возникнет статическое поле. Наличие этого поля и создает возможность возникновения статического тока в направлении оси x_2 .

Рис. 3. Зависимость амплитуды статического тока (в безразмерных переменных) (*a*) и его направления относительно оси x_I (*b*) от угла между полями. Кривая (1) получена при значениях $\tilde{E}_{1,2}$, соответствующих максимуму тока вдоль оси x_1 , кривая (2) – при $\tilde{E}_{1,2}$, соответствующих максимуму тока вдоль оси x_2 , кривая (3) – при $\tilde{E}_1 = 1$, $\tilde{E}_2 = 2$.

Работа выполнена при финансовой поддержке РФФИ (грант 05-02-17319а).

[1] J.Y. Romanova, Y.A. Romanov. "Nanostructures: Physics and technology", St. Peterburg, Rossia, June 20-25, 2005, p.199-200.

[3] Romanov Yu.A., Romanova Ju.Yu., Mourokh L.G., Horing N. J. M., Phys. Rev. B, **66**, 4, 045319 (2002).

[4] Романов Ю.А., Демидов Е.В., ФТП **31**, 3 308 (1997)

[5] M.L. Orlov, Yu. A. Romanov, L.K. Orlov. Microelectronics Journal, **36**, 396-400 (2005)

^[2] Ю. А. Романов, Ю. Ю. Романова, ФТП **35**, 211 (2001).

Особенности магнетотранспорта в гетероструктурах InAs/AlSb в условиях остаточной фотопроводимости

В.И.Гавриленко¹, Ю.Г.Садофьев^{1,2}, <u>К.Е.Спирин</u>¹, S.R.Johnson², Y.-H.Zhang²

¹Институт физики микроструктур РАН, ГСП-105, Нижний Новгород, 603950

¹Arizona State University, Tempe, AZ 85287, USA

e-mail: spirink@ipm.sci-nnov.ru

Квантово-размерные гетероструктуры на основе InAs представляют интерес для создания высокочастотных транзисторов, резонанснотунельных диодов, оптоэлектроники среднего инфракрасного диапазона и спинтроники. Исследуемая в данной работе гетеросистема InAs/AlSb характеризуется большой величиной разрыва зоны проводимости на гетерогранице, составляющей 1.35 эВ, высокой подвижностью электронов в квантовой яме (КЯ) InAs (достигающей 9.10^5 см²/В·с при T = 4.2К, $n_s \approx 10^{12}$ сm⁻²), которые присутствуют даже в номинально не легированных структурах [1]. Одной из специфических особенностей рассматриваемой гетеросистемы является биполярность остаточной фотопроводимости при низких температурах. При освещении гетероструктур ИК излучением наблюдается положительная остаточная фотопроводимость (ОФП), при освещении видимым излучением наблюдается отрицательная остаточная фотопроводимость [2].

В настоящей работе исследовалась динамика осцилляций Шубникова-де-Гааза (ШдГ) при дозированной подсветке образцов излучением синего и/или ИК светодиодов. Измерения проводились на образцах, выращенных методом МПЭ [3], имеющих форму холловского креста. Образцы размещались в жидком гелии в центре сверхпроводящего соленоида. Измерения проводились на переменном токе частотой 9 Гц с использованием стандартной схемы синхронного детектирования. Параметры исследованных образцов при T = 4,2К приведены в таблице 1.

Образец	$n_{\rm s}$, cm ⁻²	μ , cm ² /B·c	Подложка
B824	$7.1 \cdot 10^{11}$	$2.6 \cdot 10^5$	GaAs
A675	$8.4 \cdot 10^{11}$	$2.3 \cdot 10^5$	GaSb
A678	$8 \cdot 10^{11}$	$0,50 \cdot 10^5$	GaSb

Таблица 1

На рис.1 представлены результаты измерений осцилляций ШдГ в образце №824 до подсветки и при трех последовательно увеличивающихся дозах подсветки синим светодиодом. Видно, что период осцилляций увеличивается с дозой подсветки, что свидетельствует об уменьшении концентрации электронов в КЯ вследствие явления отрицательной ОФП. Из рис.1 видно, что, начиная примерно с полей 2 Т, наблюдается заметное зеемановское расщепление осцилляций, что позволило оценить величину эффективного фактора Ланде, которая заметно отличается от «объемного» значения для InAs $g^* = -15$ вследствие коллективных эффектов в двумерном электронном газе [3,4]. Оценка проводилась по формуле

$$g^* = -4 \left(\frac{m_0}{m_c} \right) (n+1/2) \frac{H^+ - H^-}{H^+ + H^-}$$
, где

 m_0 — масса свободного электрона, $m_c = 0.035m_0$ — циклотронная масса в образце В824 [5], n — номер уровня Ландау, H^{\pm} - значения магнитного поля в правом и левом пике расщепившейся осцилляции ШдГ. Полученные результаты представлены в таблице 2.

Рис.1. Осцилляции ШдГ в образце B824 до подсветки (кривая 1) и при тех последовательно увеличивающихся дозах подсветки синим светодиодом (кривые 2-4).

Таблица 2. Значения эффективного g^* -фактора длоя образца B824, определенные по расщеплению пиков осцилляций ШдГ, соответствующих различным номерам уровней Ландау (столбцы 1-6) до подсветки и при последовательно увеличивающихся дозах подсветки синим светодиодом (строки 1-4).

	$n_{\rm s} \cdot 10^{-11}$	Номер уровня Ландау						
	см ⁻²	1	2	3	4	5	6	
1	7.1			-25	-25	-24	-21	
2	5.2		-25	-22	-19			
3	3.6		-23	-14				
4	3.1	-27	-24	-18				

Рис.2. а) - осцилляции ШдГ в образце А678 до подсветки (пунктир) и после подсветки ИК светодиодом (сплошная линия); b) – фурье-образы осцилляций как функции обратного магнитного поля.

Исследование образцов, выращенных на подложках GaSb, показали, что для них характерно возникновение биений осцилляций Шубникова-де-Гааза при подсветке ИК светодиодом, приводящей к увеличению концентрации 2D электронов – рис.2. Эффект может быть связан с увеличением асимметрии КЯ и возникновением двух лестниц уровней Ландау вследствие эффекта Рашбы [6]. Похожий эффект наблюдался и при подсветке синим светодиодом - рис.3. Как следует из фурье-анализа осцилляций ШдГ как функции обратного магнитного поля (рис.3b), в этом случае действительно возникает две частоты осцилляций, одна из которых совпадает с частотой в неподсвеченном образце, а другая соответствует меньшей концентрации носителей. Эффект отрицательной ОФП в этом случае проявляется в росте доли осцилляций. Соответствующих меньшей концентрации, с увеличением дозы подсветки. По мнению авторов, это свидетельствует о возникновении неоднородного распределения концентрации в образце.

Рис.3. а) - осцилляции ШдГ в образце А675 до подсветки (пунктир) и после подсветки синим светодиодом (сплошная линия); b) – фурьеобразы осцилляций как функции обратного магнитного поля.

Работа выполнена при поддержке РФФИ (проект 05-02-17531) и РАН.

- C.Nguyen et al. J. Electron. Mater., 22, 255 (1993).
- [2] G. Tuttle et al. J. Appl. Phys., 65, 5239 (1989).
- [3] Yu.G. Sadofyev et al. Appl. Phys. Lett., 81, 1833, (2002).
- [4] A.Raymond *et al.* Sol.St.Commun. **55**, 271 (1985)
- [5] В.Я.Алешкин и др. ФТП 39, 71 (2005).
- [6] Ю.А.Бычков, Э.И.Рашба. Письма в ЖЭТФ, 39, 66 (1984).

Исследование различных факторов влияющих на свойства слоев GaN, выращенных на сапфире методом газофазной эпитаксии

О.И.Хрыкин, Н.В. Востоков, В.М.Данильцев, М.Н.Дроздов,

Ю.Н. Дроздов, А.П. Котков^{*}, В.И. Шашкин

Институт физики микроструктур РАН. Н. Новгород. 603950. Россия ГСП-105 *ФГУП "НПП "Салют", 603950, г. Н. Новгород, ул. Ларина, д. 7

В последнее время во всем мире идет активная работа по совершенствованию способов выращивания нитридных соединений третьей группы $A^{3}N$, свойства которых позволяют создавать полупроводниковые приборы с уникальными параметрами. Однако на пути получения качественного материала существуют объективные сложности. В первую очередь, это отсутствие согласованного по постоянной решетки подложечного материала. Обычно в качестве подложки используют сапфир α -Al₂O₃(0001), но возникает проблема эпитаксии в условиях сильного рассогласования периодов решеток. Существенное влияние на свойства эпитаксиальных слоев оказывает также качество исходных реагентов и в особенности аммиака. Согласно [1], замена аммиака квалификации 5N на 6N привела к снижению уровня остаточного легирования N_d-N_a с 10¹⁶ до 10¹⁴ см⁻³.

Кроме того, при отработке режимов эпитаксии GaN. на сложность поиска оптимальных температур эпитаксии, давления в зоне роста, газовых потоков и т.п. (как и при получении любых соединений $A^{3}B^{3}$ накладывается сложность в выборе материала, толщины и правильных режимов наращивания буферного слоя. В работе исследовано влияние обработки сапфировой подложки и чистоты аммиака на свойства слоев нитрида галлия, металлоорганической полученных методом газофазной эпитаксии (МОГФЭ).

Эксперимент

Наращивание эпитаксиальных слоев *GaN* и AlN осуществляли методом МОГФЭ при пониженном лавлении в вертикальном кварцевом реакторе без раздельного ввода индукционным реагентов, с нагревом подложкодержателя [2]. Давление в реакторе изменялось 37 до 150 Торр. Источниками Ga, Al И N служили триметилгаллий $(TM\Gamma),$ триметилалюминий (TMA) и аммиак (NH₃). В качестве газа-носителя использовали водород или смесь водорода с азотом. Эксперименты проводились на различных сериях подложек с набором углов отклонения среза от кристаллографической плоскости (0001) - 0,1°; 0,2°; 0,3°, 0,4°; 0,5°; 3-х типов по концентрации малоугловых границ и 2-х типов отжига пластины между операциями реза и полировки (низко- и высокотемпературный).

В процессах эпитаксии использовался аммиак очищенный методом низкотемпературной ректификации, а также легколетучая фракция аммиака. Указанная фракция характеризуется наиболее низким содержанием воды, но она обогащена летучими примесями (*H*₂*S*; *O*₂; *CO*; *CO*₂ и др.) [3].

Слои *GaN* выращивали двухстадийным методом [2]. После предварительных процедур высокотемпературного отжига и «нитридизации» поверхности подложки высаживали буферный слой AlN или GaN толщиной около 20 нм при температуре от 600 до 650°С. Далее проводили отжиг буферного слоя в потоке аммиака при 1050÷1150°С в течение нескольких минут. Потом температуру изменяли до рабочей и производили наращивание эпитаксиального рабочего слоя GaN, при температурах в диапазоне от 900 до 1100°C. Толшина нарашиваемых слоев составляла несколько микрометров.

Экспериментальные результаты

Влияние обработки подложки сапфира Результаты показывают, что статистически

значимое снижение полуширины рентгенодифракционных кривых качания слоев GaN(0004) дали подложки с отклонением среза 0,3° без малоугловых границ и отожженные после резки при высокой температуре. В других случаях наблюдается либо увеличение, либо снижение полуширины рентгеновской дифракции, которое значительно ниже дисперсии.

Влияние чистоты аммиака на свойства <u>эпитаксиальн</u>ых слоев

Провеленные нами ранее исследования позволяют сделать вывод о наличии в аммиаке летучих соединений, являющихся источником электрически активных примесей в GaN, которые могут быть эффективно удалены методом низкотемпературной ректификации. Этот вывод подтверждают и эксперименты по росту слоев GaN. Слои GaN, выращенные из легкой фракции аммиака, были окрашены в желтоватый цвет и имели низкое удельное концентрацию сопротивление. Высокую носителей тока в слоях GaN мы связываем с присутствием в ней сероводорода, который является активной легирующей добавкой п-типа при выращивании полупроводников группы *А*³*B*⁵ в процессах МОГФЭ. Образцы полученные из

легкой фракции аммиака имели развитую поверхность роста, см. рис.1. В процессе расходования легкой фракции аммиака из баллона морфология слоев менялась от матовой до зеркальной, уменьшалась интенсивность окраски, поверхностная концентрация носителей

Рис.2. AFM - изображение поверхности слоя GaN типа 2.

при 300 К снизилась с 3×10^{16} см⁻² до 2×10^{15} см⁻², подвижность увеличилась с 19 до 37 см²/(В×с), полуширина кривой качания РД уменьшилась с 16 до 11 угловых минут. Эпитаксиальные слои, выращенные из аммиака-ректификата, были бесцветными, зеркально гладкими и характеризовались полушириной кривой качания рентгеновской дифракции (РД) 0,06 угловых минут. Поверхность таких слоев была без заметной шероховатости, см. рис.2.

В зависимости от режима осаждения слои GaN были полуизолирующими (поверхностная концентрация $n_{\rm s}{<}10^{12}~{\rm cm}^{-2})$ или имели $n_{\rm s}{\sim}10^{13}{\rm cm}^{-2}$, подвижность до 350 ${\rm cm}^2/({\rm B}{\times}{\rm c})$ и обладали хорошими люминесцентными свойствами.

<u>Влияние ростовых параметров</u>

При подборе оптимальных режимов роста показано, что изменение давления в реакторе эпитаксиальной vстановки оказывает значительное влияние на процесс эпитаксиального наращивания и свойства слоев *А*₃*N*. Наличие паразитных реакций между *NH*₃ и существенно $Ga(CH_3)_3$ в газовой фазе, затрудняет процесс получения нитридных соединений при давлениях в зоне роста >150 Торр. Как отмечалось ранее авторами [4,5], переход к пониженному давлению при сохранении соотношений реагентов в газовой фазе приводит к резкому возрастанию скорости роста нитрида галлия, что связано со снижением паразитных гомогенных газофазных реакций между металлоорганическими соединениями и аммиаком при давлении в реакционной камере менее 350 Торр. В наших опытах изменение давления в интервале 150÷75 Торр не оказывало заметного влияния на скорость эпитаксиального наращивания GaN. Добавление азота в поток газа-носителя (*H*₂) при пониженном давлении к существенным изменениям скорости роста также не приводило. Некоторое увеличение скорости роста наблюдалось при повышении температуры эпитаксиального наращивания от 950 до 1100°С. Следует отметить, что при низкотемпературном выращивании буферных слоев, для получения удовлетворительных параметров рабочего слоя, необходимо значительно (в 3-5 раз) увеличивать концентрацию *NH*₃ в потоке газовой смеси из-за высокой термостабильности молекулы аммиака. Состав буферного слоя (AlN или GaN) существенного влияния на структурные и электрофизические свойства эпитаксиальных слоев не оказывал. Наибольшее влияние на слоев GaN оказывала толшина свойства буферного слоя. При малой толщине, образование сплошной пленки GaN (и переход к двумерному росту) происходило при больших временах эпитаксиального наращивания. Большая толщина промежуточного слоя требовала увеличения толщины рабочего слоя для планаризации поверхности после перехода к двумерному механизму роста.

Работа выполнена при поддержке программ Президиума РАН "Новые материалы и структуры" и "Низкоразмерные квантовые структуры".

 В.В. Лундин и др. Тезисы докладов 2-й Всероссийской конференции "Нитриды галлия, индия и алюминия – структуры и приборы", Санкт-Петербург, 03-04 февраля 2003, с.103-104.
 Хрыкин О.И. и др. // VI Российская конференция по физике полупроводников Санкт-Петербург, 27-31 октября 2003г. с.162.

[3] А.П. Котков и др. Сборник трудов 4^{-ой} Всероссийской конференции «Нитриды галлия, индия и алюминия - структуры и приборы». 3 - 5июля 2005г., с.54.

[4] Sasaki T., Matsuoka T. // J. Appl. Phys. 1995. V.77 (1). p.192-200.

[5] О.И. Хрыкин, и др. Тезисы докладов VI Российской конференции по физике полупроводников, Санкт-Петербург, 27-31 октября 2003г., с.162-163.
Измерение времени спиновой релаксации в квантовых точках InAs/AlGaAs метолом Ханле.

<u>Т.С.Шамирзаев¹</u>, В.А. Абалмассов¹, К.С. Журавлев¹, J. Furst², H. Pascher²

¹Институт Физики Полупроводников, пр. Лаврентьева 13, Новосибирск, 630090 Россия ² Experimentalphysik I, Universität Bayreuth, Germany e-mail: timur@thermo.isp.nsc.ru

Электронные состояния в квантовых точках (KT) характеризуется дискретным спектром энергетических состояний [1] делающих их интересным объектом построения для элементарных ячеек для квантовых расчетов кубитов [2]. Для использования КТ в качестве кубитов необходимо знать время жизни спина электрона в КТ. В последнее время множество работ было посвящено исследованию времени жизни спина носителей заряда в КТ InAs в матрице GaAs. В работе [3], посвященной изучению эффекта Ханле в КТ InAs/GaAs различного размера было обнаружено два характерных времени спиновой релаксации несколько пикосекунд и несколько сотен пикосекунд. Спиновая релаксация с существенно большими временами (0.9 нс) была обнаружена в КТ InGaAs посредством измерения поляризации затухания фотолюминесценции (ФЛ) после импульсного возбуждения циркулярно поляризованным-светом [4]. Более того, измерения поляризации время разрешенной ФЛ при резонансном возбуждении показывают, что характерные времена спиновой релаксации носителей заряда в КТ InAs/GaAs превышают 20 нс [5], и существенно превышают время жизни экситона в КТ.

В соответствие теоретическими с представлениями, одним из доминирующих механизмов релаксации спина в КТ при низких температурах является спин-спиновое взаимодействие электрона спинов И ядер составляющих квантовую точку атомов [6]. Время спиновой релаксации электрона при спинвзаимодействии спиновом обратно пропорционально количеству атомов в точке и для InAs KT, содержащей 10⁴ ядер имеет порядок величины 100 пс. Другой обсуждаемый в литературе механизм разориентации спина носителей заряда в КТ обеспечивается спин орбитальным взаимодействием, сопровождающемся излучением или поглошением фононов. Расчетные значения времен релаксации спина в InAs КТ за счет спинорбитального взаимодействия превышают 1 нс [7].

В данной работе мы исследовали время спиновой релаксации электронов в квантовых

точках InAs сформированных в матрицах $Al_xGa_{1-x}As$ при изменении 0<x<1 измеряя фотолюминесценции, деполяризацию возбужденной циркулярно-поляризованным светом, в поперечном магнитном поле (эффект Ханле).

Исследуемые структуры с квантовыми точками InAs в матрицах AlGaAs с содержанием AlAs 0%, 25%, 50%, 75% и 100% были выращены методом молекулярно лучевой эпитаксии на подложках полуизолирующего GaAs ориентации (001) с использованием установки Riber-32P. Структуры содержали пять слоев InAs KT, разделенных слоями AlGaAs толщиной 8 нм. Слои с КТ были ограничены сверху и снизу AlAs толщиной 16 слоями нм для предотврашения ухода неравновесных носителей заряда из области с КТ в подложку и на поверхность структуры. Фотолюминесценция измерялась в геометрии обратного отражения. Сигнал ΦЛ собирался конденсором, установленным параллельно поверхности образца. Возбуждающее лазерное излучение попадало на образец под углом, отклоненным на 5 градусов от нормали к поверхности образца. ФЛ возбуждалась излучением аргонового лазера с энергий фотонов 2.41 эВ. Диаметр лазерного пучка составлял 130 мкм. Для отдельного КΤ InAs измерения в матрице GaAs

Рис. 1. Измерение эффекта Ханле в структурах с квантовыми точками при температуре 1.8 К (Е – энергия измерения). При измерении кривых (*a*)–(*e*) ФЛ возбуждалась Ar лазером (2.41 эВ, 50 mW). Кривая (f) измерена при возбуждении ΦЛ лазерным диодом (1.59 eV, 17 mW).

использовался полупроводниковый лазерный диод с энергий фотонов 1.59 эВ. Направление циркулярной поляризации возбуждающего излучения переключалась с частотой 50 кГц для исключения влияния поляризации ядерных спинов на результаты измерения эффекта Ханле. Все измерения проводились при температуре 1.8 К.

Кривые Ханле для InAs КТ в матрицах AlGaAs различным содержанием AlAs с приведены на рисунках 1(а)-(f). Для всех образцов исследованных кривые Ханле собой представляют Лоренцовский контур, лежаший независящей на от величины магнитного поля подкладке. Степень поляризации ФЛ в нулевом магнитном поле изменяется с изменением состава матрицы немонотонно: возрастет с 0.2% до 10,0% при возрастании х от 0 до 0,5 и уменьшается до 0,8% при дальнейшем возрастании х до 1. Несмотря на немонотонный характер изменения степени магнитном поляризации в нулевом поле, повышение доли AlAs в составе твердого раствора матрицы от 0 до 100% приводит к монотонному уменьшению ширины контура кривой Ханле на несколько порядков величины от 2700 mT до 17.5 mT как это показано на рисунке 2а. Изменение энергии возбуждения при замене аргонового лазера полупроводниковым, при измерении эффекта Ханле в КТ InAs/GaAs приводило к возрастанию степени поляризации в нулевом магнитном поле до 4% и уменьшению ширины контура Ханле до 112 mT. Расчеты времени релаксации спиновой поляризации, проведенные с использованием ширины контура, приведены на рисунке 26. Из рисунка видно, что время релаксации возрастает от 5 пс для образца с КТ InAs/GaAs до 1.5 нс в КТ InAs/AlAs.

Рисунок 2. (а) Ширина контура кривой Ханле при 1,8 К, измеренная на половине интенсивности в зависимости от содержания AlAs в матрице AlGaAs (b) время спиновой релаксации T_2 определенное по ширине кривой Ханле в зависимости от содержания AlAs в матрице AlGaAs.

В наших экспериментах возбуждение ФЛ нерезонансных условиях, проводились в следовательно, релаксация спина электронов и дырок идет в несколько этапов: в процессе энергетической релаксации в матрице, при захвате в КТ и, наконец, в самой КТ. Большую часть времени после возбуждения электроны и дырки проводят в КТ из-за большого, особенно в случае InAs/AlAs КT, времени жизни локализованных экситонов. Однако при объяснении изменения времени спиновой релаксации с изменением состава матрицы процессами, идущими в КТ, мы сталкиваемся со следующими проблемами. Во-первых, во всех измерения наших электроны И дырки локализованы в примерно одинаковых KT. Поэтому трудно объяснить существенные времени спиновой изменения релаксации, привлекая внутриточечные механизмы релаксации, которые не зависят от состава стороны, С матрицы. другой основной предполагаемый механизм спиновой релаксации в КТ - спин-спиновое взаимодействие должен приводить к Гауссовой форме кривой Ханле [6], отличной от наблюдаемого нами Лоренцевского контура. А релаксация за счет спин-орбитального взаимодействия должна приводить к существенно более длительным, по сравнению с измеренными, временам спиновой релаксации.

Мы объясняем наши экспериментальные результаты в предположении, что форма кривой определяется релаксацией Ханле спина носителей заряда в течение времени до их захвата в КТ. Изменение степени поляризации ФЛ КТ в различных матрицах в нулевом магнитном поле обусловлено изменением доли поляризованных электронов, захваченных в КТ, зависит от характера энергетической и релаксации электронов. Остаточная поляризация ФЛ в сильных магнитных полях в раках этого предположения является следствием остаточной поляризации КТ захваченных в дырок. релаксация Дальнейшая спина дырки захваченной в КТ подавлена, подобно тому, как она подавлена в квантовых ямах [7] из-за значения близкого к нулю поперечной компоненты *g*-дырок. Работа поддержана грантом РФФИ (проект №04-02-16653).

- [1] R.C. Ashoori Nature 379 413 (1996).
- [2] A. Imamoglu Physica E 16 47 (2003)
- [3] R.J. Epstein, et al. *Appl. Phys. Lett.* **78** 733 (2001)
- [4] H. Gotoh, et al. Appl. Phys.Lett. 72 1341 (1998)
- [5] M. Paillard, et al. *Phys. Rev. Lett.* 86 1634 (2001).
- [6] I. A. Merkulov, Al.L. Efros, M. Rosen *Phys. Rev.* B **65** 205309 (2002).
- [7] A. M. Alcalde, Qu. Fanyao, G.E. Marques *Physica* E **20** 228 (2004).
- [8] R.I. Dzhioev, et al. *Phys. Rev.* B **66** 153409 (2002).

Энергетическая структура и механизм рекомбинации монослойной квантовой ямы InAs/AlAs.

<u>Т.С.Шамирзаев</u>, А.М.Гилинский, А.К. Калагин, А.И.Торопов, К.С. Журавлев

Институт Физики Полупроводников, пр. Лаврентьева 13, Новосибирск, 630090 Россия e-mail: <u>timur@thermo.isp.nsc.ru</u>

Квантовые точки (КТ) InAs, образование которых определяется механизмом Странского-Крастанова, формируются на смачивающем слое (СС), представляющем собой узкую квантовую яму (КЯ). Такие КЯ, представляют собой эффективный притягивающий потенциал для неравновесных электронов и дырок, демонстрируя необычно высокую эффективность излучательной рекомбинации, превышающую эффективность люминесценции матрицы до 500 раз [1]. Следовательно, СС играет важную роль при захвате носителей заряда в КТ, а изучение энергетической структуры и рекомбинационных свойств узких КЯ важно для понимания механизмов захвата и релаксации носителей в КТ. Узкие InAs КЯ хорошо изучены в матрицах прямозонных полупроводников GaAs и InP, однако, рекомбинационные свойства таких КЯ в непрямозонных материалах до сих пор практически не изучались.

В данной работе квантовые ямы InAs/AlAs с толщиной 1-2 монослоя InAs изучались методом стационарной и нестационарной фотолюминесценции (ФЛ) при гелиевых температурах. КЯ демонстрируют интенсивную ФЛ, превышающую интенсивность ФЛ матрицы более чем на три порядка величины, что свидетельствует о высокой эффективности захвата носителей. Расчет зонной структуры показывает, что InAs/AlAs КЯ являются структурами типа I, причем основным уровнем зоны проводимости КЯ являются состояния электронов X_{XY} долины InAs.

Исследуемые структуры с квантовыми ямами InAs/AlAs были выращены методом молекулярно лучевой эпитаксии на подложках полуизолирующего GaAs ориентации (001) с использованием установки Riber-32P. Структуры содержали слой InAs толщиной 1,4 монослоя, выращенный между слоями AlAs толщиной 50 нм. Для предотвращения окисления верхний слой AlAs покрыт слоем GaAs толщиной 20 нм. Стационарная ФЛ возбуждалась излучением He-Cd лазера (hv =3.81 eV) с плотность мощности 5 Вт/см². Время разрешенная ФЛ возбуждалась излучением импульсного N₂ лазера ($h\nu$ =3.68 eV) с длительностью импульса 7 нс и пиковой плотностью мощности 150 kW/cm². ФЛ детектировалась ФЭУ, работающем в режиме счета фотонов.

Спектр ФЛ КЯ InAs/AlAs, измеренный при температуре 5 К приведен на рисунке 1. Видно, что в спектре доминируют две линии гауссовой

Рис. 1. Спектр ФЛ тонкой квантовой ямы InAs/AlAs и его разложение на составляющие линии.

формы с положениями максимумов 2.102 эВ и 2.060 эВ и с ширинами на половиной интенсивности 36 мэВ и 22 мэВ, соответственно. Кроме того, наблюдается слабая линия с положениями максимума 2.012 мэВ.

Спектры ФЛ КЯ InAs/AlAs, измеренные с задержкой после импульса возбуждения представлены на рисунке 2. Видно, что обе линии демонстрируют одинаковое длинноволновое смещение (8 мэВ) и уменьшение интенсивности со временем после возбуждения до 0.85 мс. Длительное затухание свидетельствует о непрямом характере излучательных переходов в КЯ. Расчет зонной структуры показывает, что InAs/AlAs КЯ являются структурами типа I, что согласуется с незначительным длинноволновым сдвигом положения максимума линий при уменьшении концентрации неравновесных носителей заряда. Согласно расчетам, основным уровнем зоны проводимости КЯ являются непрямозонные состояния электронов X_{XY} долины InAs.

В отличие от КЯ InAs/GaAs, спектры ФЛ которых содержат одну линию ФЛ в спектрах ФЛ КЯ InAs/AlAs наблюдается две линии. Появ-

Рисунок 2. Сверху вниз представлены спектры время разрешенной ФЛ КЯ InAs/AlAs, измеренные с задержкой после возбуждения, мкс: 0.25, 2, 8, 20, 50, 150, 250, 350, 450, 550, 650, 750, 850.

ление двух линий может быть обусловлено несколькими причинами: (1) переходами на уровни легких и тяжелых дырок; (2) расщеплением спектра на линии, связанные с флуктуациями толщины и состава КЯ; (3) фононными повторениями. Для выяснения природы линий мы повели анализ и экспериментальную проверку описанных вариантов объяснения.

Измерив поляризацию ФЛ, испускаемой в направлении параллельном плоскости КЯ мы установили, что обе линии имеют одинаковую поляризацию, обусловленную переходами на уровни тяжелых дырок [2].

Для проверки влияния структуры гетерограниц на ФЛ КЯ была измерена температурная зависимость ФЛ. Повышение температуры приводит к гашению линий уже при 50 К с энергий активации 5.5 мэВ. Линии, однако, гаснут одновременно и перераспределения интенсивности в пользу более высокоэнергетической линии, как это ожидается в случае образовании в КЯ двух областей с разной шириной ям [3], не наблюдалось. Температурная зависимость интенсивности линий, а также их гауссова форма свидетельствуют о том, что характерный размер шероховатостей гетерограниц КЯ меньше чем радиус экситона, локализованного в КЯ. Ширина линий ФЛ КЯ InAs/AlAs существенно больше ширины лини ФЛ КЯ InAs/GaAs с близкой шириной КЯ. Это свидетельствует о том, что отношение радиуса экситона к характерному размеру шерховатости гетерограницы в КЯ InAs/AlAs существенно меньше, чем в КЯ InAs/GaAs [3]. Удивительно, однако, что при одном и том же механизме уширения ширина низкоэнергетической линии в полтора раза меньше ширины высокоэнергетической линии. Этот факт наталкивает на мысль о том, что наблюдаемые нами линии являются суммой нескольких сильноперекрытых линий. Такими сильноперекрытыми линиями могли бы быть линии фононных повторений,

которые имеют место в спектрах ФЛ непрямозонных полупроводников и структур. Из-за узости КЯ волновые функции носителей заряда локализованы большей частью в матрице, причем наинизшими состояниями в зоне проводимости AlAs являются состояния электронов с симметрией X_{XY}. Следовательно, разумно ожидать, что структура фононных повторений в спектрах ФЛ будет подобна их структуре в короткопериодных сверхрешетках GaAs/AlAs типа II с симметрией X_{XY}. Поскольку ширина линий в спектрах ФЛ InAs/AlAs КЯ превышает расстояние между линиями фонноных повторений, связанных с испусканием акустических фононов AlAs (12 мэВ) и оптических фононов InAs (30 мэВ) линии этих фононных повторений сильно перекрываются. Мы разложили спектр ФЛ InAs/AlAs KT на серию гауссовых линий, соответствующих безфононному переходу и его фонноным повторениям с участием TA фонона AlAs и LO фононов InAs и AlAs. Для уменьшения числа параметров подгонки мы зафиксировали (1) ширину линий, взяв ее близкой к ширине низкоэнергетической линии и (2) определяемое величиной электрон-фонноного взаимодействия отношение интенсивностей ТА и LO фононных повторений AlAs, которое было взято равным 3.7/5 из нашей работы, посвященной изучению ФЛ GaAs/AlAs сверхрешеток типа II [4]. Результаты разложения приведены на рис.1. Видно отличное совпадение расчетного спектра с экспериментальным. Отклонение низкоэнергетического крыла расчетного спектра от эксперимента обусловлено различными переходами с испусканием двух фононов, которые не принимались в расчет при разложении. Положения слабой линии в спектре ФЛ КЯ совпадает с переходом при испускании двух оптических фононов AlAs.

Таким образом, в работе изучены узкие КЯ InAs в матрице AlAs. Расчет энергетической структуры показал, что КЯ являются структурами типа I, причем основным уровнем зоны проводимости КЯ являются состояния электронов X_{XY} долины InAs Установлено, что спектр ФЛ КЯ, идентичен спектру короткопериодных GaAs/AlAs сверхрешеток типа II и состоит из четырех, сильно перекрытых линий, соответствующих: бесфонному переходу с тремя фононными повторениями с участием LO и TA фононов AlAs и LO фонона InAs.

Работа поддержана грантом РФФИ (проект №04-02-16653).

[1] N. N. Ledentsov, et al. Phys. Rev. B **50**, 12 171 (1994).

- [2] O. Brandt, et al Phys.Rev.B 45, 4217 (1992).
- [3] K.K.Bajaj. Material. Sci. Engineering B **79**, 203 (2001).
- [4] L.S. Braginsky, et al Phys.Rev.B 63, 195305 (2001).

Межзонная фотопроводимость Ge/Si структур с самоорганизующимися

квантовыми кольцами

<u>О.А. Шегай¹</u>, В.И.Машанов¹, Н.-Н. Cheng², О.П.Пчеляков¹

¹ Институт физики полупроводников СО РАН, пр. Лаврентьева 13, Новосибирск, Россия

² Center for Condensed Matter Sciences and Graduate Institute of Electronic Engineering, National Taiwan

University, Taipei, 106, Taiwan, Republic of China

e-mail: shegai@thermo.isp.nsc.ru

Самоорганизующиеся квантовые кольца (КК) в системе Ge-Si/Si(100), были получены сравнительно недавно [1, 2]. Интерес к данному объекту обусловлен как с фундаментальной, так и прикладной точек зрения. В данной работе сообщается о получении Ge/Si(100) структур с квантовыми кольцами и изучении латеральной фотопроводимости (ФП) в зависимости от интенсивности подсветки, вызывающей межзонные переходы в данных структурах.

Исследуемые Ge/Si структуры с КК были молекулярно-лучевой получены методом эпитаксии Riber SIVA на установке 32. электронно-лучевыми снабженной двумя испарителями для германия и кремния. После слоя кремния, буферного были роста сформированы при температурах подложки (T_s) 640°C и 680°С структуры в следующей последовательности: а) слой Ge толщиной 0.8 нм, б) тонкий слой Ge толщиной 0.05 нм и в) слой кремния толщиной 2.5 нм. Между слоями а) и б) лпя повышения однородности структура выдерживалась 1 минуту при закрытых заслонках. Сверху структуры закрывались защитным слоем Si толщиной 20 нм, который выращивался при 400°С. В таких же ростовых условиях были получены структуры, содержащие лишь самоорганизующиеся квантовые точки (KT). Кроме того, для проведения измерений методом атомно-силовой микроскопии (АСМ) в тех же условиях были получены структуры без защитного слоя Si. Более подробное описание методики изготовления структур с кольцами приведено в [3].

На рис. 1 представлено ACM изображение структуры, содержащей КК (T_s =680 °C). Внешний диаметр колец составляет ~300нм, высота – 2-4 нм, их поверхностная концентрация равна ~2×10⁸ cm⁻². Анализ показал, что помимо колец на поверхности структуры содержатся и квантовые точки. Измерения латеральной ФП проводились на структурах с защитным слоем Si при температурах T= 5 ÷ 12.4 К. Подробнее методика таких измерений описана в [4].

Рис. 1. АСМ снимок поверхности структуры с квантовыми кольцами (T_s =680 °C).

Отметим, что освещаемая поверхность структур составляла приблизительно $2 \times 2 \text{ мм}^{-2}$, расстояние между контактами – 2 мм.

На рис.2 приведены типичные зависимости $\Phi\Pi$ от интенсивности подсветки образца \mathbb{N} 46, полученного при T_s =640 °C и содержащего лишь

Рис.2. Зависимость ФП от интенсивности подсветки структуры № 46 с квантовыми точками при изменении тянущего поля U=66 – 100V, T = 5 K.

квантовые точки. Видно, что, как и ранее, кривая ФП имеет ступенчатый вид, характерный для таких структур [4, 5]. Измерения, выполненные на структуре № 45, содержащей квантовые кольца, полученной в тех же ростовых условиях, что и № 46 с квантовыми точками при близких условиях измерений приведены на рис.3, которые выявили подавление ступенчатой ФП. При увеличении температуры до 10 К ступенчатая ФП исчезала полностью и наблюдался пишь монотонный рост ΦП с интенсивностью подсветки.

Рис.3. Зависимость ФП от интенсивности межзонной подсветки структуры № 45 с квантовыми кольцами при изменении тянущего поля U=60 - 100V, T = 5 K.

На рис.4 показаны кривые ФП для структуры с КК (№ 45) при достаточно большом значении тянущего поля (U=90B), содержащие резонансную ФП. С ростом температуры измерений резонанс смещается в область малых интенсивностей света. Отметим, что данное значение напряжений было оптимальным для наблюдения резонансной ФП.

Как и ранее, ступенчатое поведение ФП, представленное на рис.2, объясняется переходом локализованных к делокализованным от состояниям, при этом локализация является пространственной релаксации слелствием механических напряжений вокруг КТ [5]. Переход от структур с точками к структурам с кольцами происходит за счет удаления Ge из внутренней части КТ. Это сопровождается существенным подавлением напряжений вокруг квантовых колец в матрице Si. Наблюдаемые на рис.3 пологие ступеньки ФП, по-видимому, связаны с протеканием неравновесных носителей заряда по локализованным состояниям от оставшихся КТ.

Резонансную ФП структуры № 45 (рис.4) мы связываем с туннельным вкладом в ФП электронов, находящихся внутри квантовых колец, на состояния в матрице кремния. При этом локализация в плоскости структуры обусловлена гетерограницей Ge/Si, a вертикально потенциалом дырок смачивающего слоя. Резонанс фотопроводимости при увеличении температуры измерений смещается в сторону меньших интенсивностей подсветки. Аналогичным образом ступенчатая фотопроводимость в ведет себя структурах с квантовыми точками [5]. При увеличении тепловой энергии локализованных электронов требуется меньшее заполнение этих локализованных состояний, чтобы лостичь уровня, с которого эффективно туннелирование.

Рис.4. Зависимость $\Phi\Pi$ от интенсивности межзонной подсветки структуры № 45 с квантовыми кольцами при изменении температуры T = 5 - 12.4 K, U=90V.

Работа выполнена при поддержке РФФИ (№ 06-02-17337).

[1] J. Cui, Q. He, X.M. Jiang, et al, Appl. Phys. Lett. **83** 2907 (2003).

[2] S.W. Lee, L.J. Chen, P.S. et al, Appl. Phys. Lett. **83** 5283 (2003).

[3] V.I. Mashanov, H.-H. Cheng, et al, Physica E **28** 531 (2005).

[4]Shegai O.A., Markov V.A. et al PLDS ¹/₂ 261 (2002).

[5] Шегай О.А., Журавлев К.С. и др. Изв. АН. Сер. Физическая **67** 192 (2003).

Межзонная фотопроводимость SiGe/Si структур с квантовыми ямами

<u>О.А. Шегай¹</u>, Д.Н.Лобанов², А.И.Никифоров¹, А.В.Новиков², В.В.Ульянов¹, З.Ф.Красильник²

¹Институт физики полупроводников СО РАН, пр. Лаврентьева 13, Новосибирск, Россия ²Институт физики микроструктур РАН, ГСП-105, Нижний Новгород, Россия

e-mail: shegai@thermo.isp.nsc.ru

Ранее, нами сообщалось об обнаружении ступенчатого роста фотопроводимости (ФП) в зависимости от интенсивности межзонной подсветки в Ge/Si структурах с самоорганизующимися квантовыми точками (КТ) Ge [1-3]. В настоящей работе такое поведение ФП обнаружено и в SiGe/Si структурах с квантовыми ямами (КЯ), а также в структурах с очень тонким слоем Ge [количество монослоев (MC) N равно 4], размещенным между Si. Изучено влияние тянущего поля U и температуры измерений T на положение ступеньки в ФП данных структур.

Исследовались SiGe/Si структуры с КЯ, выращенные на подложках Si(100) в различных ростовых условиях и при различных толщинах КЯ. В первой серии образцов температура синтеза структур составляла t_g =400 и 700 °C, а во второй была ниже и находилась в пределах 250-300 °C.

На рис.1 и рис.2 представлены кривые $\Phi\Pi$ от интенсивности межзонного света Si/Ge/Si структур, содержащих слой Ge толщиной N=4 MC, выращенных при t_g = 700 и 300 °C соответственно. Также как и для структур с KT [1-3] $\Phi\Pi$ имеет ступенчатый вид с аналогичным смещением ступеньки в область малых интенсивностей света при увеличении U (рис.1) и T (рис.2). Отличием является то, что угасание ступенчатой $\Phi\Pi$ происходит при гораздо меньшем значении T.

На рис.3 показаны кривые ФП для Si₁₋ _xGe_x/Si структуры № 520, выращенной при t_g = 400 °C, с двумя КЯ толщиной d₁=4.65 нм и d₂=3.5 нм, разделенными слоем Si толщиной d=4 нм, при x₁=0.089 и x₂=0.086, соответственно. Из рисунка видно, что в ФП наблюдаются две ступеньки в области малых интенсивностей света, положение которых слабо зависит от U.

На рис.4 приведены кривые ФП для Si₁₋ $_x$ Ge_x/Si структуры с КЯ № 628 (d=10 нм, x=0.15), выращенной при t_g = 700 °C, для которой также наблюдается ступенька в области малых интенсивностей света.

На рис.5 приведены кривые ФП для Si₁₋ _xGe_x/Si структуры с КЯ № 542 (d=25 нм, x=0.1). Данная структура отличается тем, что в ней

Рис. 1. Зависимость ФП от интенсивности межзонной подсветки структуры с КЯ № 708 (N=4 MC, $t_g = 700$ °C) при изменении тянущего поля U= 5 – 37.5 V, T = 8 K.

Рис. 2. Зависимость $\Phi\Pi$ от интенсивности межзонной подсветки структуры с КЯ N=4 MC ($t_g = 300$ °C) при изменении температуры T = 4.25 – 12.5 K, U=45V.

проведено селективное легирование Si бором до уровня ~4×10¹² см⁻². Несмотря на наличие шунтирующего двумерного дырочного газа в ФП наблюдается ступенька, которая проявляется во всем диапазоне интенсивностей подсветки в отличие от кривых для структур № 520 и № 628. Ее поведение от U аналогично поведению ступенчатой ФП структур с КТ [2],

Рис.3. Зависимость $\Phi\Pi$ от интенсивности межзонной подсветки структуры с КЯ № 520 при изменении тянущего поля U= 3 – 26 V, T = 7.8 K.

однако отличие заключается в том, что рост U вызывает исчезновение ступенчатой ФП.

Ранее, для объяснения ступенчатой ФП Si/Ge структур с КТ использовался подход, основанный на теории протекания [4] неравновесных носителей заряда по локализованным состояниям, возникающим из-за релаксации механического напряжения вокруг КТ [1]. Данный подход, мы полагаем, применим и для объяснения ступенчатого поведения ФП в структурах с КЯ. В этом случае протекание неравновесных носителей заряда осуществляется локализованным по

Рис. 4. Зависимость ФП от интенсивности межзонной подсветки структуры с КЯ № 628 при изменении тянущего поля U= 5 – 33 V, T = 7.95 K.

состояниям, образующимся из-за флуктуации толщины КЯ по площади структур. Рельеф

Рис. 5. Зависимость ФП от интенсивности межзонной подсветки структуры с КЯ № 542 при изменении тянущего поля U= 8 - 24 V, T = 4.2 K.

энергетических зон, обусловленный этими флуктуациями, существенно меньше рельефа, вносимого КТ, в структурах с КТ. Этим объясняются малые значения интенсивности, при которой проявляются ступеньки в ФП структур с КЯ (рис.3 и рис.4). Поскольку минимальная флуктуация толщины КЯ не может быть меньше одного монослоя, то для структур с N=4 MC (рис.1 и рис.2) роль флуктуаций значительна, что проявляется в возникновении ступенчатой ФП при больших интенсивности значениях подсветки. Проявление ступенчатой ФП для структуры с наибольшей толщиной КЯ во всем диапазоне интенсивностей (рис.5) возможно связано с влиянием потенциала ионизованных акцепторов.

Работа выполнена при поддержке РФФИ (№ 06-02-17337).

[1] Shegai O.A., Markov V.A. et al PLDS ¹/₂ 261 (2002).

[2] Шегай О.А., Журавлев К.С. и др. Изв. АН. Сер. Физическая **67** 192 (2003).

[3] О.А.Шегай, В.А.Марков, А.И.Никифоров, ФТТ **46** 77 (2004).

[5] Шкловский Б.И., Эфрос А.Л. в кн. Электронные свойства легированных полупроводников («Наука», Москва, 1979).

Spin effects in stereoscopic pictures of the n-In_xGa_{1-x}As/GaAs double quantum well magnetoresistance dependencies on the perpendicular and parallel field components

M.V. Yakunin¹, Yu.G. Arapov¹, V.N. Neverov¹, S.M. Podgornyh¹,

N.G. Shelushinina¹, G.I. Harus¹, B.N. Zvonkov², E.A. Uskova²

Institute of Metal Physics, Ekaterinburg, Russia

² Physical-Technical Institute at Nizhnii-Novgorod State University, Russia

e-mail: <u>yakunin@imp.uran.ru</u>

Interplay of spin- and pseudospin effects in a double quantum well (DQW) brings a new physics [1], and InAs-based heterostructures are interesting in this aspect [2] since in the GaAs/AlGaAs DQWs (in which system almost all the DQW investigations have been performed so far) the GaAs layers are characterized by a very small Lande factor |g| = 0.4.

We present data on magnetoresistivity $\rho_{xx}(B, \varphi)$ of $n-In_xGa_{1-x}As/GaAs$ ($x \approx 0.2$) DQW measured in tilted magnetic fields $B(B_{\perp}, B_{\parallel})$ (φ – angle between B and the normal B_{\perp}) with thorough scanning the $(B_{\perp}, B_{\parallel})$ plane. InGaAs QWs are 5nm wide, GaAs barrier - 10nm, initial 2D electron gas total density $n_s = 2.3 \times 10^{15} \text{ m}^{-2}$. After exposure to IR illumination $n_{\rm s}$ increases about a factor of 1.5, and this value remains constant within ~0.5% during the whole experiment cycle. Measurements were held at 1.8K in a precision rotator with 0.1° rotation step guaranteed. The data are shown before (left Figures 1-3) and after IR illumination (the right ones) straightforwardly as sets of $\rho_{xx}(B_{\perp})$ at different B_{\parallel} fixed (Fig. 1) or $\rho_{xx}(B_{\perp}, B_{\parallel})$ surfaces (Fig. 2) and as grey scale maps (Fig. 3) with the superimposed calculated trajectories describing the $(B_{\perp}, B_{\parallel})$ combinations at which the Fermi energy is crossed by the N = 0, 1, 2... Landau levels, with two spin orientations considered (interpolated value |g| = 3 is used).

The DQW energy dispersion $E(k_x,k_y)$ at nonzero B_{\parallel} is a complex formation consisting of an inner surface with the fixed energy cross-sections in the

shape of Lens and an outer one with the Peanut cross-sections. The above mentioned $(B_{\perp}, B_{\parallel})$ trajectories are a set of descending lines for the inner surface and of ascending lines for the outer one (Fig. 3). Additionally, the electron motion in circle orbits is possible with jumps between the Lens and Peanut orbits corresponding to the magnetic breakdown effect (MB) [3, 4].

The main peculiarities in $\rho_{xx}(B_{\perp}, B_{\parallel})$ are: The peak at filling factor v = 1.5 (left figures) moves to lower B_{\perp} with increasing B_{\parallel} while the peak $\nu = 3$ moves to higher B_{\perp} and, contrary to the $\nu = 1.5$ peak, changes its shape that is especially pronounced in the after-illumination state (right figures). In the latter case it also splits at high B_{\parallel} . Figures 3b,c indicate that the splitting is due to the spin-split MB, which is the main process at high magnetic fields, while the sharp transformations of the $\nu = 3$ peak at low B_{\parallel} is due to that Lens(N = 0) and Peanut(N=1) trajectories move in opposite This Lens trajectory manifests directions. experimentally in Figures 2b, 3b as bulbs on the $\rho_{\rm rr}(B_{\parallel})$ ridges for $\nu = 5, 7, 9...$ Spin split-off $\nu = 1.5$ peak position in Fig. 3a indicates the higher spin splitting than is obtained from calculations, signifying the enhancement of the effective g-factor due to many body effects.

Supported by RFBR #05-02-16206 and #04-02-16614.

Fig.1. Evolution of $\rho_{xx}(B_{\perp})$ with increasing field component $B_{\parallel} = 0(1)9T$ parallel to the layers. (a) In the initial state. The Quantum Hall resistivity added. (b) After illumination. Insert: the initial and illuminated states at $B_{\parallel} = 0$ compared.

Fig. 2. The same data as in Fig. 1 in stereoscopic view (data in Fig. 1 are the cross-sections of these surfaces at different B_{\parallel} values). (a) Note a complicated behavior of $\nu = 3$ maximum as compared with the $\nu = 1.5$ maximum. (b) Unusual behavior of the $\nu = 3$ peak: fast damping and narrowing of initially dome-shaped peak at small B_{\parallel} and its splitting at higher B_{\parallel} . Also note the bulbs on the $\rho(B_{\parallel})$ ridges for $\nu = 5,7,9...$

Fig. 3. (a, b) The views from the top on Figures 2 in grey scale performance, with darker/brighter regions meaning the smaller/higher values, compared with calculations. Grey dashed lines are for Peanut trajectories, black solid lines for the Lens ones, grey solid lines for the magnetic breakdown (MB). The lines are grouped in couples due to spin splittings. (c) The second derivative of the (b) data: $-d^2 \rho_{xx}/d\varphi^2$, to show the spin splitting of the MB(N = 0) peak.

[1] S. Girvin and A. H. MacDonald in *Perspectives in Quantum Hall Effect,* Ed. S. Das Sarma and A. Pinczuk, Wiley, N. Y., 161-224 (1997).

[2] M.V. Yakunin *et al Proc. ICPS-27*, USA, 1003 (2004); Semiconductors **39**, 107 (2005); O. E. Raichev and F. T. Vasko, Phys. Rev. B **70**, 075311 (2004).

[3] N. E. Harff *et al*, Phys. Rev. B 55, 13405 (1997); I.
S. Millard *et al*, *ibid*. 55, 13401 (1997).

[4] J. Hu, A. H. MacDonald, Phys. Rev. B 46, 12554 (1997).

⁴ B_{_} [T]

6

8

Кинетические механизмы формирования GaAs нанометровых нитевидных кристаллов

<u>Н.В.Сибирев¹</u>, В.Г.Дубровский^{2,3}, Р.А.Сурис³, Г.Э.Цырлин^{1,2,3}, А.А.Тонких^{1,2,3}, И.П.Сошников^{2,3}, В.М.Устинов^{2,3}, М.Tchernycheva⁴, J.C.Harmand⁴

¹Институт аналитического приборостроения РАН, 190103, Санкт-Петербург, Россия Санкт-Петербург, ²Научно-образовательный комплекс «Санкт-Петербургский физико-технический научнообразовательный центр РАН», Хлопина 8/3, 195220, Санкт-Петербург, Россия ³Физико-технический институт им. А.Ф.Иоффе РАН, 194021, Санкт-Петербург, Россия ⁴CNRS-LPN, Route de Nozay, 91460 Marcoussis, France

Полупроводниковые нанометровые нитевидные кристаллы (ННК) имеют большие различных перспективы применения в микроэлектронных, оптоэлектронных И аналитических приборах [1,2]. Процесс формирования ННК состоит из следующих этапов [3]. На первом этапе на подготовленную поверхность полупроводника (например, Si(111) GaAs(111)) наносится каталитическое или вещество (например, Au). На втором этапе система нагревается до температуры выше эвтектики, и на поверхности образуются капли раствора материала подложки с катализатором (Au-Si или Au-Ga). На третьем этапе производится осаждение полупроводникового материала (Si или GaAs) на поверхность. При этом рост на поверхности под каплей происходит во много раз быстрее, чем на неактивированной поверхности, что и приводит образованию одномерных ННК.

теоретически В данной работе И экспериментально исследуется диффузионый рост ННК. В этом режиме основной вклад в скорость роста дает диффузионный поток с поверхности подложки и с боковой поверхности ННК на его вершину. Рассматриваемая модель роста ННК учитывает следующие процессы: (а) адсорбция на поверхности капли с интенсивностью $J=V/\Omega$ (V – скорость осаждения полупроводникового материала, Ω - объем атома в твердой фазе); (б) десорбция с поверхности вероятностью капли с $1/\tau_i$ (B) рост неактивированной поверхности со средней скоростью V_s и (г) диффузионный поток адатомов на вершину ННК $j_{diff}(L)$. Уравнение для скорости роста ННК dL/dt, полученное на основе нашей модели имеет вид:

$$\frac{\pi R^2}{\Omega} \frac{dL}{dt} = \left(\frac{V - V_s}{\Omega} - \frac{2Cr_l}{\tau_l}\right) \pi R^2 + j_{diff}(L) \quad (1)$$

Здесь C – объемная концентрация раствора, r_l межмолекулярное расстояние в жидкости. Первое слагаемое в правой части учитывает адсорбцию на поверхности капли и рост неактивированной поверхности, второе слагаемое – десорбцию с поверхности капли и третье – диффузионный поток адатомов на вершину ННК. В стационарном режиме роста общее решение для концентраций имеет вид:

 $n_{f}(z) = J\tau_{f} \sin \alpha + a_{1} \cosh(z/\lambda_{f}) + a_{2} \sinh(z/\lambda_{f})$ (2) $n_{s}(r) = J\tau_{s} + c_{1}I_{0}(r/\lambda_{s}) + c_{2}K_{0}(r/\lambda_{s})$ (3)где λ_f - диффузионная длина на боковой поверхности, лимитированная десорбцией, λ_s эффективная диффузионная длина адатома на поверхности подложки (обычно лимитированная нуклеацией), r – расстояние от центра ННК в плоскости поверхности подложки. Функции I_m и - модифицированные функции Бесселя K_m порядка т в стандартных обозначениях, І – возрастающие, _ Κ убывающие на бесконечности. Для определения 4 констант в (2), (3) необходимо 4 граничных условия, которые мы выберем следующим образом: 1) обращение в ноль потока адатомов на границе питающей полосы радиуса $R_w = 1/\sqrt{\pi N_w}$, где N_W плотность ННК. 2) условие равенства потока к основанию ННК с поверхности подложки и потока вверх при z=0; 3) условие непрерывности химпотенциалов адатомов на границе ННК и подложки и 4) условие обращения в ноль концентрации адатомов на границе с каплей.

Формулы (1)-(3) позволяют найти точные решения для концентраций адатомов на поверхности и на боковых стенках ННК. Интересующий нас диффузионный поток на вершину ННК $j_{diff}(L)$ может быть найден по формуле:

$$j_{diff}(L) = -D_f 2\pi R \left(dn_f / dz \right)_{z=L}$$

Окончательный результат для скорости роста ННК имеет вид (*H*=*Vt* – толщина осажденного слоя вещества)

$$\frac{dL}{dH} = \varepsilon - \gamma + \frac{R_*(R/\lambda_s, L/\lambda_f)}{R}$$
(4)

Функция размерности длины R* в (4) определяется согласно

$$R_{*} = 2\lambda_{f} \left[\frac{\left(\lambda_{s} / \lambda_{f}\right)\beta + \sin\alpha\left(\cosh\left(L/\lambda_{f}\right) - 1 + \beta G \sinh\left(L/\lambda_{f}\right)\right)}{\beta G \cosh\left(L/\lambda_{f}\right) + \sinh\left(L/\lambda_{f}\right)} \right]$$
(5)

$$G = \frac{I_1(R_W / \lambda_s) K_0(R / \lambda_s) + K_1(R_W / \lambda_s) I_0(R / \lambda_s)}{I_1(R_W / \lambda_s) K_1(R / \lambda_s) - K_1(R_W / \lambda_s) I_1(R / \lambda_s)}.$$
 (6)

Формулы (5) и (6) дают два существенно различных варианта асимптотик. При больших R/λ_s диффузионный вклад в скорость роста ННК пропорционален 1/R, то есть дает классическую диффузионную зависимость:

$$L \cong \left[\varepsilon - \gamma + \frac{2\lambda_s}{R}\right] H \tag{7}$$

При малых R_w/λ_s диффузионный вклад ведет себя примерно как $1/RPP^2$, то есть ведет

4000 5000 Vanowire length, nm Nanowire length, nm 4000 3000 3000 2000 2000 1000 1000 0 100 200 300 400 500 Ó 100 200 300 400 500 0 Nanowire diameter, nm Nanowire diameter, nm Рис.2 Зависимость, описываемая формулой (8) Рис.1 Зависимость, описываемая формулой (7) $\lambda s = 115$ нм H = 1000нм $\varepsilon - \gamma = 0.7$, $N_w = 5 \times 10^8 cm^{-2}$ $\lambda s=25$ нм, $\varepsilon-\gamma=0.3$, H=1000нм. $Nw=2x10^9$ см⁻²

Ростовые эксперименты GaAs ННК методом молекулярно-пучковой проводился n⁺-легированных подложках эпитаксии на GaAs(111)В, на которые в ростовой камере МПЭ предварительно наносился буферный слой GaAs толщиной 170 нм при температуре подложки 640°С. Далее, без нарушения высоковакуумных условий, подготовленную на подложку наносился слой Au некоторой толщины d_{Au} . После этого в ростовой камере установки МПЭ поверхность GaAs(111)В-Аи нагревалась до 590°C образования температуры для эвтектических капель раствора Au-GaAs, и проводилось осаждение GaAs из атомарного пучка Ga и молекулярного пучка As2 c соотношением потоков f, эффективной толщиной Н со скоростью осаждения V при ростовой поверхности Τ. температуре Анализ электронных изображений образца с различных участков поверхности позволил получить экспериментальную зависимость высоты ННК L от их поперечного размера 2R, представленную на Рис. 1 и 2. Там же приведены расчетные зависимости, полученные на основе изложенной модели.

В заключение отметим, что полученные результаты позволяют не только качественно объяснить наблюдаемые экспериментальные данные, но также и получить полезную количественную информацию о характере ростового процесса из сопоставления себя качественно отлично от классической диффузионной зависимости:

$$L \cong \left[\varepsilon - \gamma + \frac{4}{\pi N_W R^2} \frac{\ln(\sqrt{\pi N_W} < R >)}{\ln(\sqrt{\pi N_W} R)} \right] H \qquad (8)$$

теоретических и экспериментальных зависимостей L(R). Так, для примера на Рис.2 эффективная диффузионная длина адатома на поверхности равна 25 нм, а скорость испарения полупроводникового материала из капли – 0.12 МС/сек.

Данная работа выполнена при частичной финансовой поддержке программой SANDiE и РФФИ в рамках грантов № 05-02-16495-а и № 05-02-08090-офи-а, а так же фондом "Династия".

[1] A.B.Greytak, L.J.Lauhon, M.S.Gudiksen and C.M.Lieber. Appl. Phys. Lett. **84**, 4176 (2004).

[2] M.T.Bjork, B.J.Ohlsson, T.Sass, A.I.Persson, C.Thelander, M.H.Magnusson, K.Deppert, L.R.Wallenberg and L.Samuelson. Appl. Phys.Lett. **80**, 1058 (2002).

[3] K.Hiruma, M.Yazawa, T.Katsuyama, K.Ogawa, K.Haraguchi and M.Koguchi. J. Appl. Phys. **77**, 447 (1995).

[4] R.S.Wagner, W.C.Ellis. Appl. Phys. Lett. 4, 89 (1964).

[5] Е.И.Гиваргизов. Рост нитевидных и пластинчатых кристаллов из пара. М.: Наука, 1977.

[6] G.W.Sears. Acta Met. 3, 367 (1955).

[7] W.Dittmar, K.Neumann. In *Growth and perfection of crystals*. Eds. R.H.Doremus, B.W.Roberts, D.Turnball, N.Y.John, Wiley, 121 (1958).

АВТОРСКИЙ УКАЗАТЕЛЬ

Α	
Aizin G. R.	344
Arsentyev I.N.	211
В	
Baumberg J.J.	346
Bimberg D.	326
Bityutskaya L.A.	211
Bjork M.T.	354
Brazil M.J.S.P.	423
Bruck E.	293
С	
Caquiere C.	441
Chang Joonyeon	253
Cheng HH.	461
Chevtchenko S.S.	201, 219
Christol P.	330
Cibert J.	88
Cox R.T.	88
D	
Davies J.J.	88
Delvin Eamonn	285
Domashevskaya E.P.	211
Dua C.	441
Ducatteau D.	441
E, F	
Eaves L.	18
Fowler D.	18
Furst J.	457
G	
García de Abajo F.J.	346
Geelhaar L.	18
Geller M.	326
Н	520
HanselM S.	84
Harmand J.C.	467
Harus G.I.	465
Hoffmann G.G.	219
Ι	21)
Iikawa F.	423
Isaev L.S.	299
J	2))
Jensen L.E.	354
Joe Y.S.	201
Johnson S.R.	86 439 453
Joullié A.	220
K	350
Karageorgiev P	205
Kawaguchi Y	203
Kelf T	2443
Kharintsev S S	340
15110111100 V D.D.	219

	Kietzke T.	205
	Knap W.	86 441
<u> </u>	Kochevsky N.N.	379
	Komiyama S.	445
	Kononenko V.K.	330
<u>, </u>	L	550
<u>.</u>	Lappo A.N.	205
	Loos J.	170.219.201
	Lukin A.N.	211
-	Lusakowski J.	441
	Μ	
	Makarovsky O.	18
	Marent A.	326
	Mariette H.	88
)	Moran E.	441
)	N, O	111
<u> </u>	Neher D.	205
<u>, </u>	Nguven T.T.	203
<u> </u>	Ovchinnikov D.V.	203 219 201
2	Р	203,219,201
<u>, </u>	Pascher H.	457
<u> </u>	Patanè A.	18
. <u> </u>	Pistol M-E	354
	Pochtenny A.E.	205
	Podgornyh S.M.	465
-	Poisson M.A.	403
<u></u>	Prvor C.	354
,,	Pudenzi M.A.A.	255
	R	
<u>,</u>	Rabe U.	170
<u> </u>	Riechert H.	18
<u> </u>	S	10
<u> </u>	Sadowski M.L.	86
	Samuelson L.	354
,	Seredin P.V.	211
	Shelushinina N.G.	465
)	Shur M.S.	137
	Skold N.	354
	Stiller B.	205
)	Sugawara Y.	346
	T	2.10
 L	Tarasov I.S.	211
)	Tchernycheva M.	467
	TranchidaU D.	170
)	V,W	110
	Von Ortenberg M.	84
;	Wolverson D.	88
;	Ζ	00
<u> </u>	Zanolli Z.	354
)	Zhang YH.	86, 439, 453
		,,

Α	
Абакумов Г.А.	175
Абалмассов В.А.	457
Айнбиндер Р.М.	165
Аксенов В.Л.	24
Акципетров О.А.	33, 307
Александрова Г.А.	279
Алексеев А.М.	170, 172
Алешкин В.Я.	84, 86, 133, 313, 316, 322, 328, 437
Амеличев В.В.	295
Андерсен Б.	59
Андреев Б.А.	55
Андреева М.А.	120
Андронов А.А.	15
Антонов А.В.	316
Антонов Д.А.	173, 209, 215
Арапов Ю.Г.	416, 465
Аринин В.В.	283
Аристов В.В.	406
Артемьев А.Н.	360
Артемьев Е.М.	257
Артемьев Н.А.	360
Артюхов В.М.	387
Асадчиков В.Е.	185
Асеев А.Л.	47
Атай Т.	191
Афанасьев А.М.	382
Афоненко А.А.	330 322
Ахсахалян А.А.	362
Ахсахалян А.Д.	362
Б	502
Бабанов Ю.А.	281
Багаева Т.Ю.	344
Бадер М.А.	33
Баклагина Ю.Г.	213
Барабаненков М.Ю.	418 420
Барабаненков Ю.Н.	420
Баранов Д.А.	285
Бараш Ю.С.	50
Барышева М.М.	364 366 396
Батенькин М.А.	175 176
Бекин Н.А.	200
Белов А.И.	307
Белорунова И.С.	
Бельков В.В.	423
Белявский В И	<u> </u>
Беляков В А	211
Белянин А А	120 122 212
Бибишкин М С	127, 133, 313
Бизяев Л А	114, 330, 338
Биннс К	1/1, 239
	255

Больгинов В.В. 63 Борисенко И.В. 166 Бородин П.А. 259 Бреслер М.С. 318 Бутаенко О.Л. 414 Бурдов В.А. 311, 315, 340 Бухараев А.А. 177, 259 Бушуев В.А. 116,368 Бьорк М. 120 Быков В.А. 8,172 В 8 Вагизов Ф.Г. 283 Валентинов А.Г. 360 Варавин В.С. 47 Варнавская О.А 177 Варнавская О.А 177 Вариаков С.Н. 279 Васильев А.П. 350 Васильев Ю.Б. 86 Вашук М.В. 261 Вдовичев С.Н. 13, 142, 225, 263 Ведяев А.В. 144 Вербус В.А. 4355 Винниченко В.Ю. 289 Винокур В.М. 67 Витоборн Дж. 187 Витухновский А.Г. 124 Вихова О.В. 265, 423 Водолазов Д.Ю.	Бирбков А.А.	133, 313
Борисенко И.В. 166 Бородин П.А. 259 Бреслер М.С. 318 Бутаенко О.Л. 414 Бурдов В.А. 311, 315, 340 Бухараев А.А. 177, 259 Бушуев В.А. 116,368 Бьорк М. 120 Быков В.А. 8, 172 B В Вагизов Ф.Г. 283 Валентинов А.Г. 360 Варавин В.С. 47 Варнавская О.А 177 Варнаков С.Н. 279 Васильев Ю.Б. 86 Вашук М.В. 261 Волючев С.Н. 13, 142, 225, 263 Ведяев А.В. 144 Вербус В.А. 4355 Винниченко В.Ю. 289 Винокур В.М. 67 Виттборн Дж. 187 Витухновский А.Г. 124 Вихрова О.В. 265, 423 Вололазов Д.Ю. 142, 165, 150 Вознесенский Н.Б. 113 Володин А.П. 102 Володин А.П.	Больгинов В.В.	63
Бородин П.А. 259 Бреслер М.С. 318 Бугаенко О.Л. 414 Бурдов В.А. 311, 315, 340 Бухараев А.А. 177, 259 Бушуев В.А. 116,368 Бьорк М. 120 Быков В.А. 8, 172 В В Вагизов Ф.Г. 283 Валентинов А.Г. 360 Варавин В.С. 47 Варнавская О.А 177 Варнавская О.А 177 Варавин В.С. 47 Вариавская О.А 177 Варавин В.С. 47 Варавин В.С. 47 Варавин В.С. 47 Варавиче С.Н. 251 Васильев А.П. 350 Васильев К.В. 261 Вдовичев С.Н. 13, 142, 225, 263 Ведяев А.В. 144 Вербус В.А. 435 Винниченко В.Ю. 289 Винокур В.М. 67 Витобский А.Г. 124 Вихрова О.В. 213 </td <td>Борисенко И.В.</td> <td>166</td>	Борисенко И.В.	166
Бреслер М.С. 318 Бугаенко О.Л. 414 Бурдов В.А. 311, 315, 340 Бухараев А.А. 177, 259 Бушуев В.А. 116,368 Бьорк М. 120 Быков В.А. 8, 172 В В Вагизов Ф.Г. 283 Валентинов А.Г. 360 Варавин В.С. 47 Варнавская О.А 177 Варнавская О.А 177 Варавин В.С. 47 Варавиская О.А 177 Варавиская О.А 177 Варавиская О.А 177 Варавиская О.А 178 Варавиская О.А 131 Варавиская О.А 289 Виноградов А.С. 385, 398	Бородин П.А.	259
Бугаенко О.Л. 414 Бурдов В.А. 311, 315, 340 Бухараев А.А. 177, 259 Бушуев В.А. 116,368 Бьорк М. 120 Быков В.А. 8, 172 В 8 Вагизов Ф.Г. 283 Валентинов А.Г. 360 Варавин В.С. 47 Варнавская О.А 177 Варнавская О.А 177 Варнавская О.А 177 Варинков С.Н. 279 Васильев Ю.Б. 86 Валук М.В. 261 Вдовичев С.Н. 13, 142, 225, 263 Ведяев А.В. 144 Вербус В.А. 435 Винниченко В.Ю. 289 Винокур В.М. 67 Виттборн Дж. 187 Виторадов А.С. 385, 398 Винокур В.М. 67 Виторадов Д.Ю. 142, 165, 150 Вознесенский А.Г. 124 Вихрова О.В. 265, 423 Володин А.П. 102 Володин В	Бреслер М.С.	318
Бурдов В.А.311, 315, 340Бухараев А.А.177, 259Бушуев В.А.116,368Бьорк М.120Выков В.А.8, 172ВВВагизов Ф.Г.283Валентинов А.Г.360Варавин В.С.47Варнавская О.А177Варнавская О.А177Варнавская О.А177Варнавская О.А177Варнавская О.А279Васильев А.П.350Васильев Ю.Б.86Валук М.В.261Вдовичев С.Н.13, 142, 225, 263Ведяев А.В.144Вербус В.А.435Виноградов А.С.385, 398Винокур В.М.67Виттборн Дж.187Витухновский А.Г.124Вихорова О.В.265, 423Володин А.П.102Володин А.П.102Володин А.П.102Володин А.П.297Востоков В.В.213Влых Д.В.385ГГарриленко Л.В.Гавриленко В.И.84, 86, 133, 316, 328, 439, 441, 453, 445Гавриленко В.И.84, 86, 133, 316, 328, 439, 441, 453, 445Гарриленко Л.В.316Гарилин Е.Ю.418Гайкович К.П.179, 370Гайнутдинов Р.В.213Галь Н.Р.168Галушков А.И.295Ганичев С.Д.78, 83Ганичев С.Д.78, 83Ганичев С.Д.78, 83Ганичев С.Д.78, 83Ганичев С.Д.78, 83<	Бугаенко О.Л.	414
Бухараев А.А. 177, 259 Бушуев В.А. 116,368 Бьорк М. 120 Быков В.А. 8, 172 В	Бурдов В.А.	311, 315, 340
Бушуев В.А. 116,368 Бьорк М. 120 Быков В.А. 8, 172 В	Бухараев А.А.	177, 259
Бьорк М. 120 Быков В.А. 8, 172 В 38 Вагизов Ф.Г. 283 Валентинов А.Г. 360 Варавин В.С. 47 Варнавская О.А 177 Варнавская О.А 177 Варнавская О.А 177 Варнавская О.А 177 Варинеков С.Н. 279 Васильев Ю.Б. 86 Вашук М.В. 261 Вдовичев С.Н. 13, 142, 225, 263 Ведяев А.В. 144 Вербус В.А. 435 Винниченко В.Ю. 289 Винокур В.М. 67 Виттборн Дж. 187 Витухновский А.Г. 124 Вихрова О.В. 265, 423 Водолазов Д.Ю. 142, 165, 150 Вознесенский Н.Б. 113 Володин А.П. 102 Володин В.В. 213 Володин В.С. 285 Воробьева Н.В. 297 Востоков Н.В. 427, 447, 455 Вугальтер Г.	Бушуев В.А.	116,368
Быков В.А. 8, 172 В 283 Валентинов А.Г. 283 Валентинов А.Г. 360 Варавин В.С. 47 Варнавская О.А 177 Варнавская О.А 177 Варнавская О.А 177 Варнаков С.Н. 279 Васильев А.П. 350 Васильев Ю.Б. 86 Вашук М.В. 261 Вдовичев С.Н. 13, 142, 225, 263 Ведяев А.В. 144 Вербус В.А. 435 Винниченко В.Ю. 289 Винокур В.М. 67 Виттборн Дж. 187 Витухновский А.Г. 124 Вихрова О.В. 265, 423 Водолазов Д.Ю. 142, 165, 150 Вознесенский Н.Б. 113 Володин А.П. 102 Володин В.В. 213 Володин В.С. 285 Воробьсва Н.В. 297 Востоков Н.В. 427, 447, 455 Вугальтер Г.А. 291 Вялы	Бъорк М.	120
В Вагизов Ф.Г. 283 Валентинов А.Г. 360 Варавин В.С. 47 Варнавская О.А 177 Варнаков С.Н. 279 Васильев Ю.Б. 86 Вашук М.В. 261 Вдовичев С.Н. 13, 142, 225, 263 Ведяев А.В. 144 Вербус В.А. 435 Виноградов А.С. 385, 398 Винокур В.М. 67 Витухновский А.Г. 124 Вихрова О.В. 265, 423 Водолазов Д.Ю. 142, 165, 150 Возносенский Н.Б. 113 Володин А.П. 102 Володин В.С. 285 Воробьева Н.В. 297 Востоков Н.В.	Быков В.А.	8, 172
Вагизов Ф.Г. 283 Валентинов А.Г. 360 Варавин В.С. 47 Варнавская О.А 177 Варнаков С.Н. 279 Васильев Ю.Б. 86 Вашук М.В. 261 Вдовичев С.Н. 13, 142, 225, 263 Ведяев А.В. 144 Вербус В.А. 435 Винноградов А.С. 385, 398 Винокур В.М. 67 Витоборн Дж. 187 Витухновский А.Г. 124 Вихрова О.В. 265, 423 Водолазов Д.Ю. 142, 165, 150 Вознесенский Н.Б. 113 Володин А.П. 102 Володин А.П. 102 Володин В.С. 285 Воробьева Н.В. 297 Востоков Н.В. 427, 447, 455 Вугальтер Г.А. 291 Вялых Д.В. 385	В	
Валентинов А.Г. 360 Варавин В.С. 47 Варнавская О.А 177 Варнавская О.А 177 Варнавская О.А 177 Варнавская О.А 177 Варинавская О.А 177 Варильев А.П. 350 Васильев Ю.Б. 86 Вашук М.В. 261 Вдовичев С.Н. 13, 142, 225, 263 Ведяев А.В. 144 Вербус В.А. 435 Винниченко В.Ю. 289 Виноградов А.С. 385, 398 Винокур В.М. 67 Виттборн Дж. 187 Витухновский А.Г. 124 Вихрова О.В. 265, 423 Водолазов Д.Ю. 142, 165, 150 Вознесенский Н.Б. 113 Володин А.П. 102 Володин В.С. 285 Воробьева Н.В. 297 Востоков Н.В. 427, 447, 455 Вугальтер Г.А. 291 Вялых Д.В. 316 Гаврилекю Л.В. 316 <t< td=""><td>Вагизов Ф.Г.</td><td>283</td></t<>	Вагизов Ф.Г.	283
Варавин В.С. 47 Варнавская О.А 177 Варнаков С.Н. 279 Васильев А.П. 350 Васильев Ю.Б. 86 Вашук М.В. 261 Вдовичев С.Н. 13, 142, 225, 263 Ведяев А.В. 144 Вербус В.А. 435 Винниченко В.Ю. 289 Винокур В.М. 67 Виттборн Дж. 187 Витухновский А.Г. 124 Вихрова О.В. 265, 423 Водолазов Д.Ю. 142, 165, 150 Вознесенский Н.Б. 113 Волбков В.В. 213 Володин А.П. 102 Володин В.С. 285 Воробьева Н.В. 297 Востоков Н.В. 427, 447, 455 Вугальтер Г.А. 291 Вялых Д.В. 385 Г Гавриленко Л.В. Гавриленко Л.В. 316 Гаврилин Е.Ю. 418 Гайкович К.П 179, 370 Гайнутдинов Р.В. 213	Валентинов А.Г.	360
Варнавская О.А 177 Варнаков С.Н. 279 Васильев А.П. 350 Васильев Ю.Б. 86 Вашук М.В. 261 Вдовичев С.Н. 13, 142, 225, 263 Ведяев А.В. 144 Вербус В.А. 435 Винниченко В.Ю. 289 Виноградов А.С. 385, 398 Винокур В.М. 67 Виттборн Дж. 187 Витухновский А.Г. 124 Вихрова О.В. 265, 423 Водлазов Д.Ю. 142, 165, 150 Вознесенский Н.Б. 113 Володин А.П. 102 Володин А.П. 102 Володин В.С. 285 Воробьева Н.В. 297 Востоков Н.В. 427, 447, 455 Вугальтер Г.А. 291 Вялых Д.В. 385 Г 7 Гавриленко Л.В. 316 Гавриленко Л.В. 316 Гавриленко Л.В. 316 Гавриленко Л.В. 213 <td< td=""><td>Варавин В.С.</td><td>47</td></td<>	Варавин В.С.	47
Варнаков С.Н. 279 Васильев А.П. 350 Васильев Ю.Б. 86 Вашук М.В. 261 Вдовичев С.Н. 13, 142, 225, 263 Ведяев А.В. 144 Вербус В.А. 435 Винниченко В.Ю. 289 Виноградов А.С. 385, 398 Винокур В.М. 67 Виттборн Дж. 187 Витухновский А.Г. 124 Вихрова О.В. 265, 423 Водолазов Д.Ю. 142, 165, 150 Вознесенский Н.Б. 113 Волков В.В. 213 Володин А.П. 102 Володин В.С. 285 Воробьева Н.В. 297 Востоков Н.В. 427, 447, 455 Вугальтер Г.А. 291 Вялых Д.В. 385 Г 7 Гавриленко Л.В. 316 Гаврилин Е.Ю. 418 Гайкович К.П 179, 370 Гайнутдинов Р.В. 213 Гальть Н.Р. 168 <td< td=""><td>Варнавская О.А</td><td>177</td></td<>	Варнавская О.А	177
Васильев А.П. 350 Васильев Ю.Б. 86 Вашук М.В. 261 Вдовичев С.Н. 13, 142, 225, 263 Ведяев А.В. 144 Вербус В.А. 435 Винниченко В.Ю. 289 Виноградов А.С. 385, 398 Винокур В.М. 67 Виттборн Дж. 187 Витухновский А.Г. 124 Вихрова О.В. 265, 423 Водолазов Д.Ю. 142, 165, 150 Вознесенский Н.Б. 113 Волков В.В. 213 Володин А.П. 102 Володин В.С. 285 Воробьева Н.В. 297 Востоков Н.В. 427, 447, 455 Вугальтер Г.А. 291 Вялых Д.В. 385 Г 7 Гавриленко В.И. 84, 86, 133, 316, 328, 439, 441, 453, 445 Гавриленко В.И. 84, 86, 133, 316, 328, 439, 441, 453, 445 Гавриленко В.И. 84, 86, 133, 316, 328, 439, 441, 453, 445 Гавриленко Л.В. 213 Галль Н.Р.	Варнаков С.Н.	279
Васильев Ю.Б. 86 Вашук М.В. 261 Вдовичев С.Н. 13, 142, 225, 263 Ведяев А.В. 144 Вербус В.А. 435 Винниченко В.Ю. 289 Виноградов А.С. 385, 398 Винокур В.М. 67 Витборн Дж. 187 Витухновский А.Г. 124 Вихрова О.В. 265, 423 Водолазов Д.Ю. 142, 165, 150 Вознесенский Н.Б. 113 Волков В.В. 213 Володин А.П. 102 Володин В.С. 285 Воробьева Н.В. 297 Востоков Н.В. 427, 447, 455 Вугальтер Г.А. 291 Вялых Д.В. 385 Г 7 Гавриленко В.И. 84, 86, 133, 316, 328, 439, 441, 453, 445 Гавриленко В.И. 84, 86, 133, 316, 328, 439, 441, 453, 445 Гавриленко В.И. 84, 86, 133, 316, 328, 439, 441, 453, 445 Гавриленко Л.В. 213 Галь Н.Р. 168 Галушков А.И. 29	Васильев А.П.	350
Вашук М.В.261Вдовичев С.Н.13, 142, 225, 263Ведяев А.В.144Вербус В.А.435Винниченко В.Ю.289Виноградов А.С.385, 398Винокур В.М.67Виттборн Дж.187Витухновский А.Г.124Вихрова О.В.265, 423Водолазов Д.Ю.142, 165, 150Вознесенский Н.Б.113Володин А.П.102Володин В.В.213Володин В.С.285Воробьева Н.В.297Востоков Н.В.427, 447, 455Вугальтер Г.А.291Вялых Д.В.385ГГавриленко Л.В.Гавриленко Л.В.316Гавриленко Л.В.213Галь Н.Р.168Галль Н.Р.168Галль Н.Р.168Галль Н.Р.168Галонов С.В.225Гапонов С.В.225Гапонов С.В.225Гапонов Д.М.340Гаспарян П.Д.380	Васильев Ю.Б.	86
Вдовичев С.Н.13, 142, 225, 263Ведяев А.В.144Вербус В.А.435Винниченко В.Ю.289Виноградов А.С.385, 398Винокур В.М.67Виттборн Дж.187Витухновский А.Г.124Вихрова О.В.265, 423Водолазов Д.Ю.142, 165, 150Вознесенский Н.Б.113Володин А.П.102Володин В.С.285Воробьева Н.В.297Востоков Н.В.427, 447, 455Вугальтер Г.А.291Вялых Д.В.385Г1Гавриленко Л.В.316Гавриленко Л.В.213Гайкович К.П179, 370Гайнутдинов Р.В.213Галль Н.Р.168Галль Н.Р.168Галль Н.Р.168Галлы Н.Р.168Галонов С.В.225Гапонов С.В.225Гапонов С.В.225Гапонов Д.М.340Гаспарян П.Д.380	Вашук М.В.	261
Ведяев А.В. 144 Вербус В.А. 435 Винниченко В.Ю. 289 Виноградов А.С. 385, 398 Винокур В.М. 67 Виттборн Дж. 187 Витухновский А.Г. 124 Вихрова О.В. 265, 423 Водолазов Д.Ю. 142, 165, 150 Вознесенский Н.Б. 113 Володин А.П. 102 Володин В.С. 285 Воробьева Н.В. 297 Востоков Н.В. 427, 447, 455 Вугальтер Г.А. 291 Вялых Д.В. 385 Г 7 Гавриленко В.И. 84, 86, 133, 316, 328, 439, 441, 453, 445 Гавриленко Л.В. 316 Гавриленко Л.В. 213 Гайкович К.П 179, 370 Гайнутдинов Р.В. 213 Галль Н.Р. 168 Галушков А.И. 295 Ганичев С.Д. 78, 83 Ганьшина Е.А. 261 Гапонова Д.М. 340 Гаспарян П.Д. 380<	Вдовичев С.Н.	13, 142, 225, 263
Вербус В.А. 435 Винниченко В.Ю. 289 Виноградов А.С. 385, 398 Винокур В.М. 67 Витборн Дж. 187 Витухновский А.Г. 124 Вихрова О.В. 265, 423 Водолазов Д.Ю. 142, 165, 150 Вознесенский Н.Б. 113 Володин А.П. 102 Володин В.В. 213 Володин В.С. 285 Воробьева Н.В. 297 Востоков Н.В. 427, 447, 455 Вугальтер Г.А. 291 Вялых Д.В. 385 Г Гавриленко В.И. Ка, 86, 133, 316, 328, 439, 441, 453, 445 Гавриленко Л.В. 316 Гавриленко Л.В. 316 Гавриленко Л.В. 213 Галль Н.Р. 168 Галонов А.И. 295 Ганичев С.Д. 78, 83 Гап	Ведяев А.В.	144
Винниченко В.Ю.289Виноградов А.С.385, 398Винокур В.М.67Виттборн Дж.187Витухновский А.Г.124Вихрова О.В.265, 423Водолазов Д.Ю.142, 165, 150Вознесенский Н.Б.113Володин А.П.102Володин В.В.213Володин В.С.285Воробьева Н.В.297Востоков Н.В.427, 447, 455Вугальтер Г.А.291Вялых Д.В.385ГГГавриленко В.И.84, 86, 133, 316, 328, 439, 441, 453, 445Гавриленко Л.В.316Гавриленко Л.В.213Гайкович К.П179, 370Гайнутдинов Р.В.213Галль Н.Р.168Галушков А.И.295Ганьшина Е.А.261Гапонов С.В.225Гапонов Д.М.340Гаспарян П.Д.380	Вербус В.А.	435
Виноградов А.С. 385, 398 Винокур В.М. 67 Виттборн Дж. 187 Витухновский А.Г. 124 Вихрова О.В. 265, 423 Водолазов Д.Ю. 142, 165, 150 Вознесенский Н.Б. 113 Волков В.В. 213 Володин А.П. 102 Володин В.С. 285 Воробьева Н.В. 297 Востоков Н.В. 427, 447, 455 Вугальтер Г.А. 291 Вялых Д.В. 385 Г 7 Гавриленко В.И. 84, 86, 133, 316, 328, 439, 441, 453, 445 Гавриленко Л.В. 316 Гаврилин Е.Ю. 418 Гайкович К.П 179, 370 Гайнутдинов Р.В. 213 Галль Н.Р. 168 Галушков А.И. 295 Ганичев С.Д. 78, 83 Ганьшина Е.А. 261 Гапонов С.В. 225 Гапонова Д.М. 340 Гаспарян П.Д. 380	Винниченко В.Ю.	289
Винокур В.М.67Виттборн Дж.187Витухновский А.Г.124Вихрова О.В.265, 423Водолазов Д.Ю.142, 165, 150Вознесенский Н.Б.113Волков В.В.213Володин А.П.102Володин В.С.285Воробьева Н.В.297Востоков Н.В.427, 447, 455Вугальтер Г.А.291Вялых Д.В.385Г7Гавриленко В.И.84, 86, 133, 316, 328, 439, 441, 453, 445Гавриленко Л.В.316Гаврилин Е.Ю.418Гайкович К.П179, 370Гайнутдинов Р.В.213Галль Н.Р.168Галушков А.И.295Ганичев С.Д.78, 83Ганьшина Е.А.261Гапонов С.В.225Гапонова Д.М.340Гаспарян П.Д.380	Виноградов А.С.	385, 398
Виттборн Дж.187Витухновский А.Г.124Вихрова О.В.265, 423Водолазов Д.Ю.142, 165, 150Вознесенский Н.Б.113Волков В.В.213Володин А.П.102Володин В.С.285Воробьева Н.В.297Востоков Н.В.427, 447, 455Вугальтер Г.А.291Вялых Д.В.385ГГавриленко В.И.84, 86, 133, 316, 328, 439, 441, 453, 445Гавриленко Л.В.316Гаврилин Е.Ю.418Гайкович К.П179, 370Гайнутдинов Р.В.213Галль Н.Р.168Галушков А.И.295Ганичев С.Д.78, 83Ганонов С.В.225Гапонов Д.М.340Гаспарян П.Д.380	Винокур В.М.	67
Витухновский А.Г.124Вихрова О.В.265, 423Водолазов Д.Ю.142, 165, 150Вознесенский Н.Б.113Волков В.В.213Володин А.П.102Володин В.С.285Воробьева Н.В.297Востоков Н.В.427, 447, 455Вугальтер Г.А.291Вялых Д.В.385Г7Гавриленко В.И.84, 86, 133, 316, 328, 439, 441, 453, 445Гавриленко Л.В.316Гаврилин Е.Ю.418Гайкович К.П179, 370Гайнутдинов Р.В.213Галль Н.Р.168Галушков А.И.295Гапонов С.В.225Гапонова Д.М.340Гаспарян П.Д.380	Виттборн Дж.	187
Вихрова О.В.265, 423Водолазов Д.Ю.142, 165, 150Вознесенский Н.Б.113Волков В.В.213Володин А.П.102Володин В.С.285Воробьева Н.В.297Востоков Н.В.427, 447, 455Вугальтер Г.А.291Вялых Д.В.385Г7Гавриленко В.И.84, 86, 133, 316, 328, 439, 441, 453, 445Гавриленко Л.В.316Гаврилин Е.Ю.418Гайкович К.П179, 370Гайнутдинов Р.В.213Галль Н.Р.168Галушков А.И.295Ганичев С.Д.78, 83Гапонов С.В.225Гапонова Д.М.340Гаспарян П.Д.380	Витухновский А.Г.	124
Водолазов Д.Ю.142, 165, 150Вознесенский Н.Б.113Волков В.В.213Володин А.П.102Володин В.С.285Воробьева Н.В.297Востоков Н.В.427, 447, 455Вугальтер Г.А.291Вялых Д.В.385Г7Гавриленко В.И.84, 86, 133, 316, 328, 439, 441, 453, 445Гавриленко Л.В.316Гаврилин Е.Ю.418Гайкович К.П179, 370Гайнутдинов Р.В.213Галль Н.Р.168Галушков А.И.295Ганичев С.Д.78, 83Гапонов С.В.225Гапонова Д.М.340Гаспарян П.Д.380	Вихрова О.В.	265, 423
Вознесенский Н.Б.113Волков В.В.213Володин А.П.102Володин В.С.285Воробьева Н.В.297Востоков Н.В.427, 447, 455Вугальтер Г.А.291Вялых Д.В.385ГГГавриленко В.И.84, 86, 133, 316, 328, 439, 441, 453, 445Гавриленко Л.В.316Гаврилин Е.Ю.418Гайкович К.П179, 370Гайнутдинов Р.В.213Галль Н.Р.168Галушков А.И.295Ганичев С.Д.78, 83Гапонов С.В.225Гапонова Д.М.340Гаспарян П.Д.380	Водолазов Д.Ю.	142, 165, 150
Волков В.В.213Володин А.П.102Володин В.С.285Воробьева Н.В.297Востоков Н.В.427, 447, 455Вугальтер Г.А.291Вялых Д.В.385Г7Гавриленко В.И.84, 86, 133, 316, 328, 439, 441, 453, 445Гавриленко Л.В.316Гаврилин Е.Ю.418Гайкович К.П179, 370Гайнутдинов Р.В.213Галль Н.Р.168Галушков А.И.295Ганичев С.Д.78, 83Гапонов С.В.225Гапонова Д.М.340Гаспарян П.Д.380	Вознесенский Н.Б.	113
Володин А.П. 102 Володин В.С. 285 Воробьева Н.В. 297 Востоков Н.В. 427, 447, 455 Вугальтер Г.А. 291 Вялых Д.В. 385 Г 7 Гавриленко В.И. 84, 86, 133, 316, 328, 439, 441, 453, 445 Гавриленко Л.В. 316 Гаврилин Е.Ю. 418 Гайкович К.П 179, 370 Гайнутдинов Р.В. 213 Галль Н.Р. 168 Галушков А.И. 295 Ганичев С.Д. 78, 83 Гапонов С.В. 225 Гапонова Д.М. 340 Гаспарян П.Д. 380	Волков В.В.	213
Володин В.С.285Воробъева Н.В.297Востоков Н.В.427, 447, 455Вугальтер Г.А.291Вялых Д.В.385Г7Гавриленко В.И.84, 86, 133, 316, 328, 439, 441, 453, 445Гавриленко Л.В.316Гаврилин Е.Ю.418Гайкович К.П179, 370Гайнутдинов Р.В.213Галль Н.Р.168Галушков А.И.295Ганичев С.Д.78, 83Гапонов С.В.225Гапонова Д.М.340Гаспарян П.Д.380	Володин А.П.	102
Воробьева Н.В.297Востоков Н.В.427, 447, 455Вугальтер Г.А.291Вялых Д.В.385ГГавриленко В.И.84, 86, 133, 316, 328, 439, 441, 453, 445Гавриленко Л.В.316Гавриленко Л.В.316Гаврилин Е.Ю.418Гайкович К.П179, 370Гайнутдинов Р.В.213Галль Н.Р.168Галушков А.И.295Ганичев С.Д.78, 83Гапонов С.В.225Гапонова Д.М.340Гаспарян П.Д.380	Володин В.С.	285
Востоков Н.В.427, 447, 455Вугальтер Г.А.291Вялых Д.В.385ГГавриленко В.И.84, 86, 133, 316, 328, 439, 441, 453, 445Гавриленко Л.В.316Гаврилин Е.Ю.418Гайкович К.П179, 370Гайнутдинов Р.В.213Галль Н.Р.168Галушков А.И.295Ганичев С.Д.78, 83Гапонов С.В.225Гапонова Д.М.340Гаспарян П.Д.380	Воробьева Н.В.	297
Вугальтер Г.А. 291 Вялых Д.В. 385 Г 7авриленко В.И. 84, 86, 133, 316, 328, 439, 441, 453, 445 Гавриленко Л.В. 316 Гаврилин Е.Ю. 418 Гайкович К.П 179, 370 Гайнутдинов Р.В. 213 Галль Н.Р. 168 Галушков А.И. 295 Ганичев С.Д. 78, 83 Гапонов С.В. 225 Гапонова Д.М. 340 Гаспарян П.Д. 380	Востоков Н.В.	427, 447, 455
Вялых Д.В. 385 Г Гавриленко В.И. 84, 86, 133, 316, 328, 439, 441, 453, 445 Гавриленко Л.В. 316 Гавриленко Л.В. 316 Гаврилин Е.Ю. 418 Гайкович К.П 179, 370 Гайнутдинов Р.В. 213 Галль Н.Р. 168 Галушков А.И. 295 Ганичев С.Д. 78, 83 Гапонов С.В. 225 Гапонова Д.М. 340 Гаспарян П.Д. 380	Вугальтер Г.А.	291
ГГавриленко В.И.84, 86, 133, 316, 328, 439, 441, 453, 445Гавриленко Л.В.316Гаврилин Е.Ю.418Гайкович К.П179, 370Гайнутдинов Р.В.213Галль Н.Р.168Галушков А.И.295Ганичев С.Д.78, 83Гапонов С.В.225Гапонова Д.М.340Гаспарян П.Д.380	Вялых Д.В.	385
Гавриленко В.И.84, 86, 133, 316, 328, 439, 441, 453, 445Гавриленко Л.В.316Гаврилин Е.Ю.418Гайкович К.П179, 370Гайнутдинов Р.В.213Галль Н.Р.168Галушков А.И.295Ганичев С.Д.78, 83Гапонов С.В.225Гапонова Д.М.340Гаспарян П.Д.380	Γ	
441, 453, 445Гавриленко Л.В.316Гаврилин Е.Ю.418Гайкович К.П179, 370Гайнутдинов Р.В.213Галль Н.Р.168Галушков А.И.295Ганичев С.Д.78, 83Гапонов С.В.225Гапонова Д.М.340Гаспарян П.Д.380	Гавриленко В.И.	84, 86, 133, 316, 328, 439,
Гавриленко Л.В.316Гаврилин Е.Ю.418Гайкович К.П179, 370Гайнутдинов Р.В.213Галль Н.Р.168Галушков А.И.295Ганичев С.Д.78, 83Гапонов С.В.225Гапонова Д.М.340Гаспарян П.Д.380		441, 453, 445
Гаврилин Е.Ю.418Гайкович К.П179, 370Гайнутдинов Р.В.213Галль Н.Р.168Галушков А.И.295Ганичев С.Д.78, 83Гапонов С.В.225Гапонова Д.М.340Гаспарян П.Д.380	Гавриленко Л.В.	316
Гайкович К.П179, 370Гайнутдинов Р.В.213Галль Н.Р.168Галушков А.И.295Ганичев С.Д.78, 83Ганьшина Е.А.261Гапонов С.В.225Гапонова Д.М.340Гаспарян П.Д.380	Гаврилин Е.Ю.	418
Гайнутдинов Р.В. 213 Галль Н.Р. 168 Галушков А.И. 295 Ганичев С.Д. 78, 83 Ганьшина Е.А. 261 Гапонов С.В. 225 Гапонова Д.М. 340 Гаспарян П.Д. 380	Гайкович К.П	179, 370
Галль Н.Р. 168 Галушков А.И. 295 Ганичев С.Д. 78, 83 Ганьшина Е.А. 261 Гапонов С.В. 225 Гапонова Д.М. 340 Гаспарян П.Д. 380	Гайнутдинов Р.В.	213
Галушков А.И. 295 Ганичев С.Д. 78, 83 Ганьшина Е.А. 261 Гапонов С.В. 225 Гапонова Д.М. 340 Гаспарян П.Д. 380	Галль Н.Р.	168
Ганичев С.Д. 78,83 Ганьшина Е.А. 261 Гапонов С.В. 225 Гапонова Д.М. 340 Гаспарян П.Д. 380	Галушков А.И.	295
Ганьшина Е.А. 261 Гапонов С.В. 225 Гапонова Д.М. 340 Гаспарян П.Д. 380	Ганичев С.Д.	78, 83
Гапонов С.В. 225 Гапонова Д.М. 340 Гаспарян П.Д. 380	Ганьшина Е.А.	261
Гапонова Д.М. 340 Гаспарян П.Д. 380	Гапонов С.В.	225
Гаспарян П.Д. 380	Гапонова Д.М.	340
	Гаспарян П.Д.	380

Гатиятов Р.Г.	259
Гатц Р.	186
Германенко А.В.	421
Гилинский А.М.	459
Голдобин Э.	166
Голубев В.Г.	33
Горай Л.И.	372
Горшков О.Н.	425
Грибков Б.А.	13, 142, 225, 253, 263
Гришин М.В.	223
Грищенко Ю.В.	185
Гудина С.В.	416
Гуревич С.А.	140, 293
Гуртовой В.Л.	153
Гусев А.В.	429
Гусев О.Б.	318
Гусев С.А.	13 114 142 225 263 358
Гусейнов Д.В.	429
Гуськов С.С.	374
Л	
Далидчик Ф.И.	223
Данилов С.Н.	83
Ланилов Ю.А.	255 265 267 423
Ланильцев В М	
Лелков Г В	181
Лелкова Е Г	181
Лемилов В	277
Лемилов Е В	320 441
Лемилов Е С	200 265 267 425
Лемиховский В Я	209, 203, 207, 425
Ленисов С А	301
Лмитриев П Н	63
Лолин Е П	15
Лорофеев И А	192
Лоценко И П	
Лроздов М Н	203
Дроздов Ю.Н.	08 255 201 234 423 427
дроздов то ли.	98, 233, 301, 334, 423, 427, 447, 455
Дружнов Д.М.	267 209
Дубинов А.А.	133 313 322
Дубонос С.В.	153, 515, 522
Дубровский В.Г.	<u></u> Δ67
Лунаевский М.С.	140
Дятлов А.А.	360
<u> </u>	500
Егоров В.К.	275
Егоров Е.В.	275
Ежевский А А	
Ежов А.А.	429
Еловиков С.С.	307
Елсуков Е.П.	199
Емельянов А.М.	352
	552

Ермолаева О.Л.	229
Ефимов Ю.П.	88
Ж	
Жаров А.А.	4
Ждан П.А.	231, 235, 237
Живаева Л.В.	257
Жигунов Д.М.	303, 332, 431
Жолудев А.А.	44
Жуков А.Е.	326, 350
Журавлев К.С.	324, 457, 459
3	,,
Забелин А.В.	360
Забродин И.Г.	358, 387
Забродская Н.В.	352
Забродский А.Г.	109
Забродский В.В.	352
Заведеев Е.В.	217
Зайцев-Зотов С.В.	79
Закревский Н.В.	84
Занавескин М.Л.	185
Заскалько В.В.	150
Заяц С.В.	199
Звонков Б.Н.	84, 133, 265, 313, 416, 421,
	423, 465
Зенкевич А.В.	173, 209, 215
Зинченко Д.И.	15
Зубков В.И.	326
Зуев С.Ю.	391, 414
И	
Ивакин Е.В.	221
Иванов В.В.	199
Иванов Д.А.	77
Иванов С.	195
Иванов С.В.	91
Ивченко Е.Л.	83
Игнатов А.А.	18
Иконников А.В.	86, 328, 439
Ильющенков Д.С.	293
Иржак Д.В.	377
К	
Казаков Е.Д.	356
Казанцев Д.В.	186, 187, 191
Кайгородов А.С.	199
Кайлманн Ф.	186
Калагин А.К	459
Калач К.М.	289
Калинин Ю.Е.	261, 389
Камбаров Д.А.	340
Каплан С.Ф.	33
Капра Р.В.	33
Карамурзов Б.С.	181
Карбань О.В.	193, 195

Каретникова И.Р.	13, 233
Карминская Т.Ю.	166
Карпов А.В.	392, 394
КасаткинА С.И.	295
Каськов И.А.	387
Кашкаров П.К.	303, 431
Квардаков В.В.	360
Кведер В.В.	56
Келейнов И.В.	433, 451
Ким Е.М.	307
Кириллов Б.Ф.	360
Кирпиленко Г.Г.	217
Кислинский Ю.В.	166, 277
Клёнов Н.В.	148
Климов А.Ю.	15, 113, 142, 358
Климов Ю.А.	253
Клюенков Е.Б.	113, 114, 358, 362, 387
Ковалев В.И.	265
Ковалевский С.А.	223
Кожанов А.Е.	126
Кожевин В.М.	140, 293
Козлов В.А.	435
Козлов Д.В.	84, 437
Коков З.А.	181
Колосов С.И.	392, 394
Колченко Н.Н.	223
Комиссинский Ф.В.	166, 277
Комков В.Н.	172
Кондаков А С.	410
Конов В.И.	217
Константинян К.И.	166
Коныгин Г.Н.	199
Копаев Ю.В.	1
Копнин Н.Б.	67
Копьев П.С.	91
Корнев В.К.	148, 166
Корнилов В.М.	197
Коротеев Ю.М.	269
Корчуганов В.Н.	360
Коршунов А.С.	271
Котков А.П.	455
Котов Л.Н.	389
Кочаровский В.В.	129, 133, 313
Кочаровский Вл.В.	129, 133, 313
Кочерешко В.П.	88
Кошелец В.П.	63
Красильник З.Ф.	55, 98, 301, 332, 334, 348,
Красильникова Л.В.	55. 301. 332
Кривелевич С.А.	336
Крикунов А.И.	295
Криштопенко С.С.	86, 439

16	
Крыжков Д.И.	55
Кудасов Ю.Б.	271, 273
Кудрявцев В.В.	213
Кузин С.В.	36, 414
Кузнецов В.А.	387
Кузнецов В.П.	55, 348
Кузнецов М.С.	320
Кузнецов О.А.	98, 328
Кунькова З.Э.	265
Курдюков Д.А.	33
Курин В.В.	73
Кущенков С.А.	279
Л	
Ладугин М.А.	338
Ларионова В.А.	421
Лачинов А.А.	297
Лачинов А.Н.	197, 297
Лебединский Ю.Ю.	173, 209, 215
Лейнонен Т.	342
Лесников В.П.	267
Линдгрен Б.	120
Лобанов Д.Н.	98, 334, 463
Лобанова Ю.Л.	380
Ломаева С.Ф.	199
Лопатин А.Я.	114 358 362
Лубнин Е.Н.	217
Лучин В.И.	114 356 358
Львова Т.В.	91
Люблинская О.Г.	91
M	71
Маевский А.Г.	360
Мазурова О.М.	213
Макаренко И В	168
Маковийчук М И	326
Максимов Г А	172
	1/3
Мациков И В	130, 103
Мальшера Е И	289
	227
Марони дини К.В.	324
Маркориор И М	133, 441
Маркевцев И.М.	84
Маркелов А.С.	44
Мармалюк А.А.	15, 338
Маровскии І.	33
марычев М.О.	425
Матвеев В.В.	285
Машанов В.И.	461
Медведев П.Г.	382
Мельников А.С.	67, 159, 161
Мельцер Б.Я.	91
Менсов С.Н.	175, 176
Мизинов А.Л.	113

Минакова В.Е.	79
Миньков Г.М.	421
Миронов В.Л.	13, 225, 229, 231, 233
Митрофанов А.	193
Митрофанов А.В.	384, 414
Михайлов А.Н.	340
Михайлов Н.Н.	47
Михайлов.Г.М.	289
Михрин В.С.	350
Миянага Т.	281
Моисеенко А.Н.	84
Молдавская Л.Д.	443
Молодцов С.Л.	385
Морозов М.Ю.	342
Морозов С.В.	84, 133, 441, 445
Морозов Ю.А.	342
Мошнина И.А.	33
Мудрый А.В.	318
Муравьёв А.М.	295
Муравьев В.А.	362
Мурель А.В.	255 427 447
Мурзина Т.В.	33 307
Муртазаев А.К.	275
H	213
Набиуллин И.Р.	197
Найда О.В.	360
Неверов В.Н.	416 465
Некипелов С.В.	385 398
Некоркин С.М.	133 313
Нефелов И.М.	13 67 233
Никитенко Ю.В.	15, 07, 255
Никитин А.Ю.	324
Никитов С.А.	420
Никитушкин Л.С.	13 225 231 233 263
Никифоров А.И.	13, 223, 231, 233, 203
Николаев А В	449,405
Николаев Л П	433
Николаев С.В.	412
Никопич А В	131
Никупов А В	120
Новиков А В	09 224 462
Нозприн Ю Н	98, 534, 405
Носков Р Е	15, 142
Ниргазизов Н И	4
Нургазизов П.И.	235, 237
Пурмикко А.В.	191
Обознов В А	
Оболенский С Р	63
	348
Овсянников Г.А.	166, 277
Овчинников С.1.	279
Овчинникова Е.Н.	120
Огасавара 1.	281

Одноблюдов М.А.	293
Окомельков А.В.	155
Ольшанецкий Б.З.	449
Орликовский А.А.	51
Осипов Н.Н.	153
Оцелич Н.	186
П	
Падалица А.А.	15
Паленов Д.А.	431
Панкратов А.Л.	157
Панчук В.В.	285
Паршин А.С.	279
Пацелов А.М.	281
Пашков П.П.	324
Перцов А.А.	414
Песса М.	342
Пестов А.Е.	114, 358, 387, 391
Петраков А.П.	389
Петров Д.С.	231
Пилюгин В.П.	281
Пименов С.М.	217
Пиршин И.В.	402
Платонов А.В.	88
Платонов В.В.	84
Подгорных С.М.	416
Подольский В.В.	265, 267
Позднякова В.И.	67, 159
Полищук О.В.	344, 346
Полковников В.Н.	113, 362, 391
Попов В.В.	137, 344, 346
Пряхин Д.А.	443, 447
Пугач Н.Г.	144
Пудонин Ф.А.	295
Пунегов В.И.	392, 394
Пунегов Д.В.	377
Пчеляков О.П.	449, 461
Р	
Раскин Д.Г.	387
Резвов В.А.	360
Резник В.Я.	305
Ремизов Д.Ю.	55, 348
Рехвиашвили С.Ш.	207
Ри Д.Д.	324
Романов А.Ю.	40
Романов Ю.А.	433, 451
Романова Ю.Ю.	433, 451
Рощин Б.С.	185
Рощупкин Д.В.	377
Рощупкина О.Д.	116
Рут О.Э.	421
Рутьков Е.В.	168
Рыжанова Н.В.	144

Рыжов Д.А.	67, 159
Рыжова А.А.	433, 451
Рябова Л.И.	126
Рябоконь В.Н.	172
Рябоштан Ю.А.	338
Ряжкин А.В.	281
Рязанов В.В.	63
С	
Савельев Д.А.	209
Садовников А.А	389
Садофьев Ю.Г.	86, 439, 453
Садыков Э.К.	283
Саламатов Е.	195
Салащенко Н.Н.	113, 114, 356, 358, 362,
	387, 391, 414
Самохвалов А.В.	142, 146
Сапожников М.В.	253, 265, 267
Сатанин А.М.	299, 364, 366, 396
Саунин С.А.	172
Сахаров С.А.	377
Светлов С.П.	301
Селемир В.Д.	84
Селюков Р.В.	336
Семенов А.Н.	91
Семенов В.Г.	285
Семенова Е.С.	326, 350
Сибельдин Н.Н.	95
Сибирев Н.В.	467
Сивков В.Н.	385, 398
Сивков Д.В.	385, 398
Сидоров Ю.Г.	47
Силаев М.А.	67, 161
Ситников А.В.	261, 389
Скворцов М.А.	20
Склизкова В.П.	213
Скориков М.Л.	95
Слемзин В.А.	370, 414
Смехова А.Г.	120
Смирнов Д.А.	176
Смирнова И.А.	400
Смолянкина О.Ю.	163
Снигирев А.А.	360
Соболев М.М.	350
Соболев. Н.А.	352
Соловьев В.А.	91
Соломонов А.В.	326
Сонг Ж-Х.	191
Сорокин С.В.	91
Сошников И.П.	467
Спирин К.Е.	328, 445, 453
Старков В.В.	418
Степина Н.Д.	213

Степихова М.В.	55, 301, 332, 425
Субботин А.Н.	380, 410
Суворов Э.В.	400
Сугоняко А.	193
Сурис Р.А.	467
Суслов Н.А.	380
Суханов В.Л.	352
Суходолов А.В.	221
Сучков А.И.	265
Сычев Ф.Ю.	33
Т	
Тагиров Л.Р.	71
Тарасенко С.А.	83
Таценко О.М.	84
Тегаев Р.И.	181
Темирязева М.П.	265
Теперик Т.В.	137, 346
Терентьев Я.В.	91
Терещенко А.Н.	305
Теруков Е.И.	318
Тетельбаум Д.И.	340
Тийс С.А.	449
Тимофеев В.Б.	3
Тимошенко В.Ю.	303, 332, 431
Титков А.Н.	168, 140
Тихов С.В.	209
Тиходеев С.Г.	106
Толстихина А.Л.	185, 213
Тонких А.А.	467
Торопов А.И.	459
Торопов М.Н.	113
Троицкий Б.Б.	176
Трушин В.Н.	44
Тулин В.А.	153
Тульский И.И.	261
Турков В.К.	389
Турьянский А.Г.	402
y Vőreğe erek E.D.	
УОЫИВОВК Е.В.	88
Угрюмов О.В.	177
Удалов О.1.	25
УЗДИН D.M.	275, 287
	449, 463
у ндалов ю.к. Voucopa A	318
	91
VCTUHOD R M	416, 465
Δ	326, 467
Фаллеев М А	274
Фатеев Л В	127 244 246
Фёлоров К Г	157, 344, 346
Феофанов А К	15/
+ comunos A.K.	63

Филатов Д.О.	173, 209, 215, 227
Филиппов А.В.	84
Фомин Л.А.	289
Фоминов Я.В.	77
Фраерман А.А.	13, 25, 142, 225, 267, 233,
	253, 263
Фролов В.Д.	217
X	
Хазанов Е.	195
Хайдуков Ю.Н.	24
Хайруллина А.Я.	221
Харитонов А.И	362
Харконен А.	342
Харус Г.И.	416
Хасанов О.	195
Хизриев К.Ш.	275
Хилленбранд Р.	186, 187, 191
Хиршфелд П.	59
Хольтц П.О.	324
Хомицкий Д.В.	29, 429
Хохлов Д.Р.	126
Хохлова Л.В.	176
Хрыкин О.И.	427, 447, 455
Ц	
Цветков В.А.	95
Цой Е.С.	380
Цыбин Н.Н.	114
Цыбин Н.Н.	358
Цымбалов Г.М.	137
Цыпленков В.В.	320
Цырлин Г.Э.	467
Ч	
Чалков В.Ю.	55, 301
Чернов В.В.	362
Чернов В.В.	356, 362
Чернышев Е.Г.	281
Чесноков С.А.	175
Чигинев А.В.	73
Чигиринский Ю.И.	425
Чуев М.А.	382
Чукалина М.В.	412

Чупрунов Е.В.	44, 374
Чхало Н.И.	113, 114, 387, 356, 358
Ш	
Шабанов В.Н.	301
Шабельников Л.Г.	404, 406
Шалеев М.В.	98, 334
Шалыгина О.А.	303, 332, 431
Шамирзаев Т.С.	457, 459
Шастин В.Н.	309, 320
Шашкин В.И.	427, 443, 447, 455
Швецов А.В.	291
Шевелько А.П.	356
Шевцов В.Б.	13, 225, 263
Шегай О.А.	461, 463
Шелушинина Н.Г.	416
Шенгуров В.Г.	55, 301, 332
Шенгуров Д.В.	301, 334
Шерешевский И.А.	13, 67, 159, 233
Шерстобитов А.А.	421
Шмагин В.Б.	55, 348
Шмаенок Л.А.	114, 358
Штейнман Э.А.	305
Шубин А.Б	231
Шулаков Е.В.	400, 408
Шулгунова И.С.	326
Шулешова И.Ю.	443
Шур В.Я.	9
Щ	
Щелоков И.А.	410, 412
Щербак П.Н.	261
Ю	
Югай К.Н.	151, 163
Юрков Г.Ю.	285
R	
Яблонский А.Н.	55, 98, 334
Явсин Д.А.	140, 293
Якунин М.В.	416, 465
Ясинский В.М.	221
Яссиевич И.Н.	293